Solutions to Attendance Quiz \# 6 for Dr. Z.'s Number Theory Course for Sept. 23, 2013
1.: Using the recursive algorithm directly, find the proudct-of-prime-powers representation of 420

Sol. of 1:

The smallest prime divising 420 is $2.420 / 2=210$ is an integer. $420 / 2^{2}=210 / 2=105$ is still an integer, but $420 / 2^{3}=105 / 2$ is not an integer. So $p_{1}=2, a_{1}=2$ and $n^{\prime}=420 / 2^{2}=105$, and we have

$$
L(420)=[2,2], L(105) .
$$

The smallest prime dividing 105 is $3.105 / 3=35$ is an integer, but $105 / 3^{2}=35 / 3$ is not, so

$$
L(105)=[3,1], L(35)
$$

The smallest prime dividing 35 is $5.35 / 5=7$ is an integer, but $35 / 5^{2}=7 / 5$ is not, so

$$
L(35)=[5,1], L(7)
$$

Finally

$$
L(7)=[7,1]
$$

Going back,

$$
\begin{gathered}
L(35)=[5,1],[7,1], \\
L(105)=[3,1],[5,1],[7,1], \\
L(420)=[2,2],[3,1],[5,1],[7,1]
\end{gathered}
$$

Or, in the usual notation

$$
420=2^{2} \cdot 3^{1} \cdot 5^{1} \cdot 7^{1}
$$

2. Use any method to find the proudct-of-prime-powers representation of 45^{50}.

Sol. to 2. $45=3^{2} \cdot 5$, so $45^{50}=\left(3^{2} \cdot 5\right)^{50}=3^{100} \cdot 5^{50}$.

