Solutions to Attendance Quiz \# 4 for Dr. Z.'s Number Theory Course for Sept. 16, 2013

1. Convert 24 to binary, in (i) sparse notation (ii) dense notation (iii) positional notation.

Solution to 1 . The largest power of $2 \leq 24$ is 2^{4}, so

$$
B(24)=2^{4}+B\left(24-2^{4}\right)=2^{4}+B(24-16)=2^{4}+B(8)
$$

The largest power of $2 \leq 8$ is 2^{3}, so

$$
B(8)=2^{3}+B\left(8-2^{3}\right)=2^{3}+B(0)=2^{3}
$$

(Since $B(0)$ is empty).
Hence
(i) sparse notation $24=2^{4}+2^{3}$.

To get the dense notation we include all the powers of $2 \leq 2^{4}$ that do not show up and stick coefficient 0 . For those that do show up, with stick coefficient 1
(ii) dense notation $24=1 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+0 \cdot 2^{0}$.

Finally to get the positional notation, we just write down the coefficients

$$
24=11000 \quad(\text { base } \quad 2)
$$

2. Use Karatsuba's algorithm (no credit for other methods!), to find the product

$$
12 \cdot 23
$$

Solution to 2:

We need to compute

$$
(1 \cdot 10+2) \cdot(2 \cdot 10+3)
$$

So $a=1, b=2, c=2, d=3$.

$$
\begin{gathered}
a \cdot c=1 \cdot 2=2 \\
b \cdot d=2 \cdot 3=6 \\
(a+c)(b+d)=(1+2)(2+3)=3 \cdot 5=15 \\
(a+c)(b+d)-a b-b d=15-2-6=7
\end{gathered}
$$

Since

$$
(10 a+b)(10 c+d)=100 a c+10((a+b)(c+d)-a c-b d)+b d
$$

We have

$$
(1 \cdot 10+2) \cdot(2 \cdot 10+3)=(2 \cdot 1) \cdot 100+10 \cdot 7+6=276
$$

Ans. to 2.: $12 \cdot 23=276$.

