## Solutions to Attendance Quiz \# 2 for Dr. Z.'s Number Theory Course for Sept. 9, 2013

1. (i) Guess a nice formula by inspection (ii) Give a rigorous proof of your guessed formula, using the Fundamental Theorem of Discrete Calculus (iii) Give a fully rigorous Zeilberger-style proof.

$$
\sum_{i=1}^{n}(i-1) i
$$

Sol.: (i) The (correct) guess is $S(n)=(n-1) n(n+1) / 3$.
APOLOGY: When we did it, on the grass, I gave you a 'hint' that it is $S(n)=(n-1) n(n+1)$. I told you the wrong thing! People who left early, either did not notice, or disproved my wrong 'guess', by showing that $S(n)-S(n-1)$ (with the wrong $S(n)$ that I gave you that was three times the right thing) is not $a(n)$. I thank the people who tried to "prove" what I gave them and realized that I gave them the wrong thing. Anyway, I will now continue with the correct $S(n)$.
(ii) Here $S(n)=(n-1) n(n+1) / 3$ and $a(n)=(n-1) n$. First we checn that $S(0)=0$ (true). Next:
$S(n)-S(n-1)=(n-1) n(n+1) / 3-(n-2)(n-1) n / 3=(n-1) n / 3 \cdot((n+1)-(n-2))=((n-1) n / 3) \cdot(3)=(n-1) n \quad=a(n)$.

QED. (by the Fundamental Theorem of Discrete Calculus).
(iii) The degree of the right side is 3 , so it is enough to check the identity

$$
\sum_{i=1}^{n}=\frac{(n-1) n(n+1)}{3}
$$

for $3+1=4$ different values. Of course, the simplest are $n=0,1,2,3$.
$n=0: 0=(0-1) 0 / 3$ is true
$n=1:(1-1)(1)=(1-1)(1)(1+1) / 3$ is true
$n=2:(1-1)(1)+(2-1)(2)=(2-1)(2)(2+1) / 3$ is true
$n=3:(1-1)(1)+(2-1)(2)+(3-1)(3)=(3-1)(3)(4) / 3$ is true.
QED!.
2. Prove the following identity (i) using the Fundamental Theorem of Discrete Calculus (ii) using a Zeilberger-style proof via checking special cases.

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Sol. of 2. Here $a(i)=i^{2}$ and $S(n)=n(n+1)(2 n+1) / 6$. First let's make sure that $S(0)=0$ (true!).

$$
\begin{aligned}
& \text { Next: } \\
& \qquad \begin{aligned}
S(n)-S(n-1) & =\frac{n(n+1)(2 n+1)}{6}-\frac{(n-1)(n-1+1)(2(n-1)+1)}{6} \\
& =\frac{n(n+1)(2 n+1)}{6}-\frac{(n-1)(n)(2 n-1))}{6} \\
= & \frac{n}{6}((n+1)(2 n+1)-(n-1)(2 n-1))=\frac{n}{6}\left(2 n^{2}+3 n+1-\left(2 n^{2}-3 n+1\right)\right)=\frac{n}{6}(6 n)=n^{2}=a(n) \quad . Q E D .
\end{aligned}
\end{aligned}
$$

The formula follows from the Fundamental Theorem of Discrete Calculus.
(ii) The degree of the polynomial (in $n$ ) that appears up on the right side is 3 so in order to give a fully rigorous proof that the identity is true for all positive integers $n$, we only need to check it for $3+1=4$ special cases. Of course, the simplest are $n=0,1,2,3$.
$n=0$ : empty sum is 0 and $S(0)=0(1)(1) / 6=0$. ok!
$n=1$ : sum is $1^{2}=1$ and $S(1)=1(2)(3) / 6=1$. ok !
$n=2:$ sum is $1^{2}+2^{2}=1+4=5$ and $S(2)=2(3)(5) / 6=5$. ok $!$
$n=3:$ sum is $1^{2}+2^{2}+3^{2}=1+4+9=14$ and $S(3)=3(4)(7) / 6=14$. ok !
QED!

