1.: Use Euler's recurrence to compute $p(7)$, if someone told you that

$$
p(0)=1 \quad, \quad p(1)=1 \quad, \quad p(2)=2 \quad, \quad p(3)=3 \quad, \quad p(4)=5 \quad, p(5)=7 \quad, \quad p(6)=11
$$

Sol. of 1: The pentagonal numbers are 1,2 (for $j=-1,1$), 5, 7 (for $j=-2,2$), etc. (we don't need to go further, since $n=7$). So

$$
p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+\ldots,
$$

and with $n=7$:
$p(7)=p(7-1)+p(7-2)-p(7-5)-p(7-7)=p(6)+p(5)-p(2)-p(0)=11+7-2-1=15$.

Ans. to 1: $p(7)=15$.
2. Apply the Bressoud-Zeilberger mapping ϕ to the following λ. Then compute $\phi^{2}(\lambda)$ and make sure that you get λ back.

$$
j=0 \quad, \quad \lambda=(4,2,1,1)
$$

Sol. to 1: $\lambda_{1}=4, t=4, j=0$, so $t+3 j=4$. Since $4 \geq 4$, The first case applies, so we stick a new part of size $t+3 j-1=3$ at the front, and subtract 1 from the remaining parts, getting

$$
\phi(\lambda)=(3,3,1,0,0)=(3,3,1) \quad ; \quad j=-1 .
$$

(Of course, we discard the 0's.)
Now let's apply ϕ to $(3,3,1)$. Now $\lambda_{1}=3, t=3$, and $j=-1$. So $t+3 j=3+3(-1)=0$. Since $0<3$, the bottom case applies, and, we delete λ_{1}, add 1 to the remaining parts, and add $\lambda_{1}-3 j-t-1=3-3(-1)-3-1=2$ additional 1-s at the end, getting

$$
\phi(3,3,1)=(3+1,1+1,1,1)=(4,2,1,1) \quad ; \quad j=0 .
$$

Yea! We got λ back.

