1. Write down the generating function for the sequence, let's call it $a(n)$, for the number of partitions of n where each part shows up at most three times and whose largest part is ≤ 5. Use it to find $a(i)$ for all $1 \leq i \leq 4$.

Sol. to 1: The set of 'atoms' is $\{1,2,3,4,5\}$ and each of them can show up either no time, one time, two times, or three times. Using generating functions, we have
$\sum_{i=0}^{\infty} a(i) q^{i}=\left(1+q+q^{2}+q^{3}\right)\left(1+q^{2}+q^{4}+q^{6}\right)\left(1+q^{3}+q^{6}+q^{9}\right)\left(1+q^{4}+q^{8}+q^{12}\right)\left(1+q^{5}+q^{10}+q^{15}\right)$
Note that this is really a polynomial of degree $3+6+9+12+15=45$ so $a(i)=0$ when $i>45$.
Luckily we don't have to compute $a(i)$ all the way to $i=45$, only up to $i=4$, so we use high-school algebra, but every time we encounter the power q^{5}, or a higher power, we repalce it by \ldots.

Let's first multiply the first two terms:

$$
\begin{aligned}
& \left(1+q+q^{2}+q^{3}\right)\left(1+q^{2}+q^{4}+q^{6}\right)=\left(1+q+q^{2}+q^{3}\right)\left(1+q^{2}+q^{4}+\ldots\right)=\left(1+q+q^{2}+q^{3}\right)+q^{2}\left(1+q+q^{2}+\ldots\right)+q^{4}(1+\ldots) \\
& \quad=1+q+q^{2}+q^{3}+q^{2}+q^{3}+q^{4}+\ldots+q^{4}+\ldots==1+q+2 q^{2}+2 q^{3}+2 q^{4}+\ldots
\end{aligned}
$$

Now let's multiply by $\left(1+q^{3}+q^{6}+q^{9}\right)$, getting
$\left(1+q+q^{2}+q^{3}\right)\left(1+q^{2}+q^{4}+q^{6}\right)\left(1+q^{3}+q^{6}+q^{9}\right)=\left(1+q+2 q^{2}+2 q^{3}+2 q^{4}+\ldots\right)\left(1+q^{3}+\ldots\right)=1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{3}+q^{4}+\ldots=$
Now let's multiply by $\left(1+q^{4}+q^{8}+q^{12}\right)$, getting

$$
\begin{gathered}
\left(1+q+q^{2}+q^{3}\right)\left(1+q^{2}+q^{4}+q^{6}\right)\left(1+q^{3}+q^{6}+q^{9}\right)\left(1+q^{4}+q^{8}+q^{12}\right) \\
=\left(1+q+2 q^{2}+3 q^{3}+3 q^{4}\right)\left(1+q^{4}+\ldots\right)=1+q+2 q^{2}+3 q^{3}+3 q^{4}+q^{4}+\ldots=1+q+2 q^{2}+3 q^{3}+4 q^{4}+\ldots
\end{gathered}
$$

Now let's multiply by $\left(1+q^{5}+q^{10}+q^{15}\right)$, BUT this is $1+\ldots$, so we are done.
Extracting coefficients, we get ans. to second part:

$$
a(0)=1 \quad, \quad a(1)=1 \quad, \quad a(2)=2 \quad, \quad a(3)=3 \quad, \quad a(4)=4
$$

2. i. Apply Glashier's bijection (in the odd \rightarrow distinct direction) to the odd partition $(7,5,5,3,3,3,1,1,1)$ to get a distinct partition, call it λ
ii. Apply Glashier's bijection (in the distinct \rightarrow odd direction) to the partition λ and show that you get $(7,5,5,3,3,3,1,1,1)$ back.

Sol. to 2i:

We first write the partition in exponent notation

$$
7^{1} 5^{2} 3^{3} 1^{3}
$$

We next express every exponent as a sum of powers of 2 (using the sparse binary representation)

$$
7^{1} 5^{2} 3^{2+1} 1^{2+1}
$$

We next convert any $s^{2^{i_{1}}+2^{i_{2}}+\ldots+2^{i_{r}}}$ (s odd, of course) into $s \cdot 2^{i_{1}}, \ldots, s \cdot 2^{i_{r}}$, getting

$$
7,5 \cdot 2,3 \cdot 2,3 \cdot 1,1 \cdot 2,1 \cdot 1
$$

That comes out to

$$
7,10,6,3,2,1 .
$$

Finally, we arrange it in decreasing order, getting

$$
\lambda=(10,7,6,3,2,1) .
$$

Sol. to 2ii

We first express every part in the form $2^{a} s$ where $a \geq 0$ and s is odd:

$$
\lambda=(2 \cdot 5,1 \cdot 7,2 \cdot 3,1 \cdot 3,2 \cdot 1,1 \cdot 1)
$$

we next replace each $2^{a} \cdot s$ by $s^{2^{a}}$.

$$
5^{2}, 7^{1}, 3^{2}, 3^{1}, 1^{2}, 1^{1}
$$

Spelled out

$$
5,5,7,3,3,3,1,1,1
$$

We finally sort it:

$$
(7,5,5,3,3,3,1,1,1)
$$

Notice that we got back the original partition!

