1. By 'brute force', Find the set of quadratic residues, and the set of quadratic non-residues of $p=13$.

Sol. to 1:

$$
\begin{gathered}
Q R(13)=\left\{0^{2}, 1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}\right\} \bmod 13 \\
=\{0,1,4,9,16,25,36\} \bmod 13 \\
=\{0,1,4,9,3,12,10\} \\
=\{0,1,3,4,9,10,12\} .
\end{gathered}
$$

Ans. to 1: The set of quadratic residues modulo 13 is $\{0,1,3,4,9,10,12\}$.
2. Using the Quadratic Reciprocity Law and Rules 1-3, find (no credit for other methods)

$$
\left(\frac{7}{17}\right)
$$

Sol. to 2: By Rule 4 the Quadratic Reciprocity Law

$$
\begin{gathered}
\left(\frac{7}{17}\right)\left(\frac{17}{7}\right)=(-1)^{(7-1)(17-1) / 4}=(-1)^{(6)(16) / 4}=(-1)^{24}=1 \\
\left(\frac{7}{17}\right)=\left(\frac{17}{7}\right)=\left(\frac{3}{7}\right),
\end{gathered}
$$

since $17 \bmod 7=3$.
Moving right along, using Rule 4 (QRL) once again

$$
\left(\frac{3}{7}\right)\left(\frac{7}{3}\right)=(-1)^{(3-1)(7-1) / 4}=(-1)^{(2)(6) / 4}=(-1)^{3}=-1 .
$$

So

$$
\left(\frac{3}{7}\right)=-\left(\frac{7}{3}\right)
$$

But since $7 \bmod 3=1$,

$$
\left(\frac{7}{3}\right)=\left(\frac{1}{3}\right)=1
$$

(Of course $\left(\frac{1}{p}\right)$ is always 1 , since $1^{2}=1$.
Going back we have,

$$
\left(\frac{3}{7}\right)=-1
$$

and finally,

$$
\left(\frac{7}{17}\right)=-1
$$

Ans. to 2: $\left(\frac{7}{17}\right)=-1$, in other words 7 is a quadratic NON-residue of 17 .

