1. Which of the following are perfect numbers? Explain!
a. 49 ; b. 28

Sol. to 1: a.: $\sigma(49)=1+7+49 \neq 2 \cdot 49$ so it not perfect.
b. $28=2^{2} \cdot 7$, so $\sigma(28)=\left(1+2+2^{2}\right) \cdot(1+7)=7 \cdot 8=56=2 \cdot 28$, so it is perfect.
2. (Without peeking at your notes), prove that if p is a prime, and $2^{p}-1$ is also a prime, then

$$
2^{p-1} \cdot\left(2^{p}-1\right)
$$

is a perfect number.
Sol. of 2: Since both 2 and $2^{p}-1$ are prime:

$$
\sigma\left(2^{p-1} \cdot\left(2^{p}-1\right)\right)=\left(1+2+\ldots+2^{p-1}\right) \cdot\left(2^{p}-1+1\right)
$$

By the famous sum of geometrical series formula

$$
1+q+\ldots+q^{n}=\frac{q^{n+1}-1}{q-1}
$$

we have

$$
1+2+\ldots+2^{p-1}=\frac{2^{p}-1}{2-1}=2^{p}-1
$$

Of course

$$
2^{p}-1+1=2^{p}
$$

So

$$
\sigma\left(2^{p-1} \cdot\left(2^{p}-1\right)\right)=\left(2^{p}-1\right) \cdot 2^{p}=2\left(2^{p-1}\left(2^{p}-1\right)\right)
$$

so $n=2^{p-1}\left(2^{p}-1\right)$ satisfies the condition $\sigma(n)=2 n$ and it is perfect.

