Solutions to the Attendance Quiz \# 17 for Dr. Z.'s Number Theory Course for Nov. 4, 2013

1. State the formula for $\sigma_{1}(n)$, and verify it for $n=20$.

Sol. to 1: If

$$
n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}
$$

Then $\sigma_{1}(n)$ (aka as $\sigma(n)$ ) is computed by

$$
\sigma(n)=\prod_{i=1}^{k}\left(1+p_{i}+\left(p_{i}\right)^{2}+\ldots+\left(p_{i}\right)^{\alpha_{i}}\right)
$$

For $n=20$ we have

$$
n=2^{2} \cdot 5^{1}
$$

so

$$
\sigma(20)=(1+2+4) \cdot(1+5)=7 \cdot 6=42 .
$$

Now let's do it from the definition.

$$
\operatorname{Div}(20)=\{1,2,4\} \cdot\{1,5\}=\{1,2,4,5,10,20\}
$$

Adding the members of $\operatorname{Div}(20)$ together gives:

$$
\sigma(20)=1+2+4+5+10+20=42
$$

Yea! The formula agrees with the definition, at least for $n=20$.
2. Verify the Dirichlet series for $\sigma(n)$ for up to $n=4$

Sol. to 2.

$$
\begin{gathered}
\zeta(s) \zeta(s-1)=\left(1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots\right)\left(1+\frac{2}{2^{s}}+\frac{3}{3^{s}}+\frac{4}{4^{s}}+\ldots\right) \\
1+\frac{2}{2^{s}}+\frac{3}{3^{s}}+\frac{4}{4^{s}}+\ldots \\
+\frac{1}{2^{s}}+\frac{2}{4^{s}}+\ldots \\
+\frac{1}{3^{s}}+\ldots \\
\\
+\frac{1}{4^{s}}+\ldots
\end{gathered}
$$

(Note, since we are only worried about $\sigma(n)$ up to $n=4$, every time we see $1 / 5^{s}, 1 / 6^{s}, \ldots$ etc. we replace it by ...).

So this equals (collecting terms)

$$
1+\frac{3}{2^{s}}+\frac{4}{3^{s}}+\frac{7}{4^{s}}+\ldots
$$

and indeed $\sigma(1)=1, \sigma(2)=1+2=3, \sigma(3)=1+3=4, \sigma(4)=1+2+4$.

