1. For the following primes p and q (let $n=p q$) public key e, and encrypted message c
(i) Check that e is an OK key, i.e. that it is coprime to $\phi(n)$.
(ii) Find the deciphering key, d, such that $d e \equiv 1(\bmod \phi(n))$
(iii) Suppose Alice sent you the encrypted message c. Check that this is an OK message (coprime to n), and if it is find her original message?, m

$$
p=5 \quad, \quad q=7 \quad, \quad e=5 \quad, \quad c=9
$$

Sol. to 1.: (i) $n=5 \cdot 7=35, \phi(35)=(5-1)(7-1)=(4)(6)=24$. Since $\operatorname{gcd}(5,24)=1$ it is an OK key.
(ii) $d=\left[5^{-1}\right]_{24}=5($ since $5 \cdot 5=25 \equiv 1 \quad(\bmod 24))$.
(iii) $\operatorname{gcd}(9,35)=1$ (since $9=3^{2}$ and $35=5 \cdot 7$ so they don't share primes, in real life you would need to use the Euclidean algorithm, but here we can take shortcuts).

The original message m is $c^{d}(\bmod n)$, so

$$
m=9^{5} \quad(\bmod 35)
$$

$$
\begin{gathered}
9^{1} \text { modulo } 35=9 \\
9^{2} \text { modulo } 35=81 \text { modulo } 35=11 \quad, \\
9^{4} \text { modulo } 35=11^{2} \text { modulo } 35=121 \text { modulo } 35=16
\end{gathered}
$$

So

$$
9^{5} \text { modulo } 35=9^{1} \cdot 9^{4} \text { modulo } 35=9 \cdot 16 \text { modulo } 35=144 \text { modulo } 35=4
$$

Ans. to 1(iii): The original 'message' was 4.

