Solutions to the Attendance Quiz \# 15 for Dr. Z.'s Number Theory Course for Oct. 28, 2013

1. Using the definition, find $\phi(12)$.

Sol. of 1:

$$
\begin{gathered}
\operatorname{gcd}(1,12)=1 \quad, \quad \operatorname{gcd}(2,12)=2 \quad, \quad \operatorname{gcd}(3,12)=3 \quad, \quad \operatorname{gcd}(4,12)=4 \quad, \quad g c d(5,12)=1 \\
\operatorname{gcd}(6,12)=6 \quad, \quad \operatorname{gcd}(7,12)=1 \quad, \quad \operatorname{gcd}(8,12)=4 \quad, \quad \operatorname{gcd}(9,12)=3 \quad, \quad g c d(10,12)=2 \\
\operatorname{gcd}(11,12)=1 \quad, \quad \operatorname{gcd}(12,12)=12
\end{gathered}
$$

The set of integers relatively prime to 12 is: $\{1,5,7,11\}$. Since its number of elements is 4 , we have:

Ans. to 1: $\phi(12)=4$.
2. Using the formula, find $\phi(1500)$.

Sol. to 2: We first do a prime-power factorization:

$$
1500=15 \cdot 100=3 \cdot 5 \cdot(2 \cdot 5)^{2}=2^{2} \cdot 3 \cdot 5^{3}
$$

So

$$
\begin{aligned}
\phi(1500)= & \left(2^{2} \cdot 3 \cdot 5^{3}\right) \cdot\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \\
= & \left(2^{2} \cdot 3 \cdot 5^{3}\right) \cdot\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right) \\
= & \left(2^{1} \cdot 3^{0} \cdot 5^{2}\right) \cdot(1 \cdot 2 \cdot 4) \\
& =(50)(8)=400
\end{aligned}
$$

Ans. to 2: $\phi(1500)=400$.

