Solutions to Attendance Quiz \# 14 for Dr. Z.'s Number Theory Course for Oct. 24, 2013

1. Use Korslet's theorem to decide whether or not the following are Carmichael numbers 1728.

Sol. to 1.: $1728=2 \cdot 864=2^{2} \cdot 432$. This means that 1728 is not square-free (it contains at least one prime (2) to a power higher than 1 . So the very first condition to being a Carmichael number is wrong, so there is no way!

Ans. to 1: 1728 is not a Carmichael number.
2. Use the Fermat primality test to investigate whether the following integers are composite or probably primes
a. 11 b. 10

Sol. to 2a: Let's pick $a=2$, and compute $2^{10}(\bmod 11)$.

$$
\begin{aligned}
& 2^{1} \equiv 2 \quad(\bmod 11) \\
& 2^{2} \equiv 2^{2} \quad(\bmod 11) \equiv 4 \quad(\bmod 11) \\
& 2^{4} \equiv 4^{2} \quad(\bmod 11) \equiv 5 \quad(\bmod 11) \\
& 2^{8} \equiv 5^{2} \quad(\bmod 11) \equiv 3 \quad(\bmod 11)
\end{aligned}
$$

So

$$
2^{10}=2^{8} \cdot 2^{2}=3 \cdot 4 \equiv 1 \quad(\bmod 11)
$$

Hence 11 is probably a prime. If you want to be more sure, then try other a 's.
Note: Of course, we know already that 11 is prime for sure. This is just to familiarize ourselves with the method. In real life computers apply it to very large integers.

Sol. to 2b: Let's pick $a=2$, and compute $2^{0}(\bmod 10)$.

$$
\begin{aligned}
& 2^{1} \equiv 2 \quad(\bmod 10) \\
& 2^{2} \equiv 2^{2} \quad(\bmod 10) \equiv 4 \quad(\bmod 10) \\
& 2^{4} \equiv 4^{2} \quad(\bmod 10) \equiv 6 \quad(\bmod 10) \\
& 2^{8} \equiv 6^{2} \quad(\bmod 10) \equiv 6 \quad(\bmod 11)
\end{aligned}
$$

So

$$
2^{10}=2^{8} \cdot 2^{2}=6 \cdot 4 \equiv 4 \quad(\bmod 10)
$$

Since this is not 1 , we know for sure that $n=10$ is composite.

