Solutions to Attendance Quiz \# 13 for Dr. Z.'s Number Theory Course for Oct. 21, 2013

1. Illustrate the proof of Wilson's theorem for $p=11$.

Sol. 1: $\left[2^{-1}\right]_{11}=6,\left[3^{-1}\right]_{11}=4,\left[5^{-1}\right]_{11}=9,\left[7^{-1}\right]_{11}=8$, so the pairs

$$
\{2,6\},\{3,4\},\{5,9\},\{7,8\}
$$

are 'inverse pairs', whose product is 1 (modulo 17). So, by commutativity of multiplitcation:

$$
2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9=(2 \cdot 6)(3 \cdot 4)(5 \cdot 9)(7 \cdot 8) \equiv 1^{4} \quad(\bmod 11) \equiv 1 \quad(\bmod 11)
$$

Multiplying by 1 and $10 \equiv-1 \quad(\bmod 11)$ gives
$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10=1 \cdot(2 \cdot 6)(3 \cdot 4)(5 \cdot 9)(7 \cdot 8) \cdot 10 \equiv 1^{4}(-1) \quad(\bmod 11) \equiv-1 \quad(\bmod 11) \quad$.
2. Check, empirically, Fermat's little theorem for $p=17$, and $a=4$.

Sol. to 2: We use fast modular exponentiation to evaluate $4^{17}(\bmod 17)$.

$$
4^{2}=16 \equiv-1 \quad(\bmod 17)
$$

hence $4^{16} \equiv(-1)^{8} \quad(\bmod 17) \equiv 1 \quad(\bmod 17)$. Finally

$$
4^{17} \equiv 4 \quad(\bmod 17)
$$

Comment: This problem turned out to be easier than I intended. 4^{2} is already -1 (modulo 17) so you get right away $4^{16} \equiv 1(\bmod 17)$. For other a it is not so fast.

