1. Using divisiblity tests, determine which of the following integers (written in the usual, base 10 , way) is divisible by (i) 9 (ii) 11 (iii) 7 .
a. 683444
b. 17888
c. 139135

Sol. of 1 :
a
(i) $6+8+3+4+4+4(\bmod 9)=2$ so it not divisible by 9
(ii) $6-8+3-4+4-4(\bmod 11)=8$ so it is not divisible by 11
(iii) $684-444 \quad(\bmod 7)=240 \quad(\bmod 7)=2$ so it is not divisible by 7
b.
(i) $1+7+8+8+8(\bmod 9)=5$ so it not divisible by 9
(ii) $1-7+8-8+8(\bmod 11)=2$ so it is not divisible by 11
(iii) $888-17 \quad(\bmod 7)=871 \quad(\bmod 7)=3$ so it is not divisible by 7
c
(i) $1+3+9+1+3+5(\bmod 9)=4$ so it not divisible by 9
(ii) $1-3+9-1+3-5(\bmod 11)=4$ so it is not divisible by 11
(iii) $139-135(\bmod 7)=4(\bmod 7)$ so it is not divisible by 7
2. Using the Perpetual calendar algorithm, find out on what day of the week is going to be Oct. 17, 5000.

Hint: Find out how many leap years will be from now until 5000 .
Sol. of 2.:
(i) The number of years until Oct. 17, 2013 is $5000-2013=2987$
(ii) The number of leap years, ignoring the excepctions and the exceptions to the exceptions is
$\lfloor(5000-2012) / 4\rfloor=747$,
(iii) The number of multiples of 100 , starting at 2013 until 5000 (including 5000) is $50-20=30$
(iv) The number of multiples of 400 until 5000 , starting with 2400 is $\lfloor(5000-2000) / 400\rfloor=\lfloor 30 / 4\rfloor=$ 7.

So the total number of leap years (extra days) is:

$$
747-30+7
$$

And the total number of days that elapsed, $\bmod 7$ is

$$
2987+747-30+7 \quad(\bmod 7)=5+5-2+0 \quad(\bmod 7)=1
$$

But today, Oct. 17, 2013, is Thursday, i.e. Day 5. So Oct. 17,5000 is going to be Day $5+1=6$, in other words, a Friday.

Ans. to 2: Oct. 17, 5000 will fall on a Friday.

