Solutions to Attendance Quiz \# 11 for Dr. Z.'s Number Theory Course for Oct. 10, 2013

1. Using the first way, find the unique $x \in\{0,1,2, \ldots, 20\}$ such that

$$
x \equiv 2 \quad(\bmod 3) \quad, \quad x \equiv 4 \quad(\bmod 7)
$$

Sol. to 1: Define $f(x):=(x \bmod 3, x \bmod 7)$.

$$
\begin{array}{r}
f(0)=(0,0), \quad f(1)=(1,1), \quad f(2)=(2,2), \quad f(3)=(0,3) \\
f(4)=(1,4), \quad f(5)=(2,5), \quad f(6)=(0,6), \quad f(7)=(1,0) \\
f(8)=(2,1), \quad f(9)=(0,2), \quad f(10)=(1,3), \quad f(11)=(2,4)
\end{array}
$$

we could go on, but since we found our target $(2,4)$, we are done!
Ans. to 1: $x=11(\bmod 21)$.
2. Using the second way (the formula) find the unique x between 0 and 62 such that

$$
x \equiv 4 \quad(\bmod 7) \quad, \quad x \equiv 2 \quad(\bmod 9)
$$

Ans. to 2: The beautiful formula (in the wikipedia notation) is If m_{1}, m_{2} are relatively prime, then The solution of

$$
x \equiv a_{1} \quad\left(\bmod m_{1}\right) \quad, \quad x \equiv a_{2} \quad\left(\bmod m_{2}\right)
$$

is given by

$$
a_{1} m_{2}\left[m_{2}^{-1}\right]_{m_{1}}+a_{2} m_{1}\left[m_{1}^{-1}\right]_{m_{2}} \quad\left(\bmod m_{1} m_{2}\right)
$$

In this problem, $a_{1}=4, m_{1}=7, a_{2}=2, m_{2}=9$. In remains to find $\left[m_{2}^{-1}\right]_{m_{1}}$ and $\left[m_{1}^{-1}\right]_{m_{2}}$. We do these together, by applying the Extended Euclidean algorithm to 7 and 9.

$$
\mathbf{9}=1 \cdot \mathbf{7}+2
$$

so

$$
\begin{aligned}
& 2=\mathbf{9}-1 \cdot \mathbf{7} \\
& \mathbf{7}=3 \cdot 2+1
\end{aligned}
$$

so

$$
1=\mathbf{7}-3 \cdot 2=\mathbf{7}-3 \cdot(\mathbf{9}-1 \cdot \mathbf{7})=\mathbf{7}-3 \cdot \mathbf{9}+3 \cdot \mathbf{7}=4 \cdot \mathbf{7}-3 \cdot \mathbf{9}
$$

So

$$
1=4 \cdot \mathbf{7}-3 \cdot \mathbf{9}
$$

Now we take this identity modulo 7 getting

$$
1 \equiv(-3) \cdot \mathbf{9} \quad(\bmod 7)
$$

So

$$
\left[9^{-1}\right]_{7}=-3=4
$$

Now we take this identity modulo 9 getting

$$
1=4 \cdot 7 \quad(\bmod 9)
$$

So

$$
\left[7^{-1}\right]_{9}=4
$$

Finally, putting

$$
\begin{gathered}
a_{1}=4 \quad, \quad m_{1}=7 \quad, \quad a_{2}=2 \quad, \quad m_{2}=9, \\
{\left[m_{2}^{-1}\right]_{m_{1}}=4, \quad\left[m_{1}^{-1}\right]_{m_{2}}=4,}
\end{gathered}
$$

we get

$$
\begin{gathered}
x=a_{1} m_{2}\left[m_{2}^{-1}\right]_{m_{1}}+a_{2} m_{1}\left[m_{1}^{-1}\right]_{m_{2}} \quad\left(\bmod m_{1} m_{2}\right) . \\
\equiv 4 \cdot 9 \cdot 4+2 \cdot 7 \cdot 4 \quad(\bmod 7 \cdot 9) \\
\equiv 144+56 \quad(\bmod 63) \equiv 200 \quad(\bmod 63) \equiv 11 \quad(\bmod 63) \quad .
\end{gathered}
$$

Ans. to 2: $x \equiv 11(\bmod 63)$. The unique x between 0 and 62 satisfying the two congruences is $x=11$.

Comment: The above is the official way. If you are in a rush, you can find $\left[9^{-1}\right]_{7}$ and $\left[7^{-1}\right]_{9}$ by 'trial and error'.

First, since $9 \equiv 2 \quad(\bmod 7)$, we have $\left[9^{-1}\right]_{7}=\left[2^{-1}\right]_{7}$. Now by trial and error, $2 \cdot 4 \equiv 1(\bmod 7)$. For $\left[7^{-1}\right]_{9}$ there is no such shortcut, but again by trying out $7,14,21,28$ and taking it modulo 9 we soon get that it is 4 .

