1. Without actually solving, find out how many solutions there are in $\{0,1, \ldots n-1\}$ where n is the modulo.
i. $21 x \equiv 12 \quad(\bmod 33)$
ii. $5^{10} x \equiv 2^{10} \quad\left(\bmod 13^{30}\right)$

Sol. to 1.

(i) $d=\operatorname{gcd}(21,33)=\operatorname{gcd}(7 \cdot 3,11 \cdot 3)=3$. Since $12 / 3$ is an integer, there are solutions, and there are 3 of them.
(ii) $d=\operatorname{gcd}\left(5^{10}, 13^{30}\right)=1$ (since they do not have common prime factors). Of course $2^{10} / 1$ is an integer, so there are (at least one) solutions, and there is only one solution (since $d=1$).
2. Find, or explain why it does not exist $4^{-1}(\bmod 21)$.

Sol. of 2. since $\operatorname{gcd}(21,4)=1$ there are solutions. Let's apply the Extended Euclidean algorithm to $\operatorname{gcd}(21,4)$
$21=5 \cdot 4+1$ so $\operatorname{gcd}(21,4)=\operatorname{gcd}(1,4)=1$ and $1=1 \cdot \mathbf{2 1}-5 \cdot \mathbf{4}$.
So

$$
(-5) \cdot 4 \equiv 1 \quad(\bmod 21)
$$

So $4^{-1} \equiv-5 \quad(\bmod 21) \equiv 16 \quad(\bmod 21),($ since $-5+21=16)$.
Ans. to 2.: $4^{-1} \equiv 16 \quad(\bmod 21)$.
Check: $4 \cdot 16=64=21 \cdot 3+1$, so indeed $4 \cdot 16 \equiv 1 \quad(\bmod 21)$.

