1. Evaluate the general continued fractions
 a. \[3 + \frac{2}{6 + \frac{2}{3}} \]
 b. \[2 + \frac{3}{1 + \frac{2}{5}} \]

2. Convert the following rational numbers into simple continued fractions.
 a. \(\frac{6}{17} \) b. \(\frac{50}{79} \) c. \(\frac{100}{117} \)

3. Express as a quadratic irrationality the following infinite continued fraction.
 a. \[x = [1, 4, 1, 4, 1, 4, 1, 4, \ldots] \]
 where 1, 4 repeat for ever.
 b. \[x = [2, 3, 4, 2, 3, 4, 2, 3, 4, \ldots] \]
 where 2, 3, 4 repeat for ever.

4. Find a representation in the form \(a + b\sqrt{Q} \) for rational numbers \(a \) and \(b \) and positive integer \(Q \),
 for the following infinite, ultimately periodic, continued fractions \(x \).
 (Hint: you should use what you got in problem 3.)
 a. \[x = [5, 1, 4, 1, 4, 1, 4, 1, 4, \ldots] \]
 where 1, 4 repeat for ever.
 b. \[x = [5, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, \ldots] \]
 where 2, 3, 4 repeat for ever.

5. a. Convert \(\sqrt{5} \) into an ultimately periodic continued fraction.
 b. Convert \(\sqrt{3} \) into an ultimately periodic continued fraction.