Dr. Z.'s Number Theory Homework assignment 22

1. Write down the generating function for the sequence, let's call it a(n), for the number of partitions of n where each part shows up at most two times and whose largest part is ≤ 4 . Use it to find a(i) for all $1 \leq i \leq 6$.

2. Write down the generating function for the sequence, let's call it a(n), for the number of partitions of n that are congruent to 2 or 3 modulo 5. Use it to find a(i) for $1 \le i \le 7$.

3. Write down the generating function for the sequence, let's call it a(n), for the number of partitions of n that are congruent to 1 or 5 modulo 6. Use it to find a(i) for $1 \le i \le 8$.

4. Understand and be able to replicate, under test condition Euler's proof that for every positive integer n, the number of partitions of n into distinct parts equals the number of partitions of n into odd parts.

 $\mathbf{5}$

(a) Write down the sets Odd(8) and Dis(n).

(b) For each member of Odd(8) apply Glashier's bijection in the odd \rightarrow distinct direction, and convince yourself that you got all the members of Dis(8).

(c) For each member of Dis(8) apply Glashier's bijection in the distinct \rightarrow odd direction, and convince yourself that you got all the members of Odd(8).

6.

i. Apply Glashier's bijection (in the odd \rightarrow distinct direction) to the odd partition (5, 5, 5, 5, 5, 3, 3, 1, 1, 1) to get a distinct partition, call it λ

ii. Apply Glashier's bijection (in the distinct \rightarrow odd direction) to the partition λ and show that you get (5, 5, 5, 5, 5, 3, 3, 1, 1, 1) back, as you should.

7.

i. Apply Glashier's bijection (in the distinct \rightarrow odd direction) to the distinct partition (5, 4, 3, 2, 1) to get an partition, call it μ

ii. Apply Glashier's bijection (in the odd \rightarrow distinct direction) to the partition μ and show that you get (5, 4, 3, 2, 1) back, as you should.