Dr. Z.'s Number Theory Homework assignment 19

- 1. Compute $\mu(n)$ for $1 \le n \le 20$.
- **2.** Check empirically that $\sum_{d|105} \mu(d) = 0$.
- **3.** State the Möbius inversion formula, and check it empirically for all $n \in Div(42)$
- 4. (Without peeking) prove that for all $n,\,\sum_{d\mid n}\mu(n)=0$.
- 5. Express the Dirichlet series for $\mu(n)$ in terms of the Riemann Zeta function and prove it.
- **6.** (Challenge) Prove that for every $\epsilon > 0$, you can find a constant C_{ϵ} such that

$$\sum_{i=1}^{n} \mu(i) \le C_{\epsilon} n^{\frac{1}{2} + \epsilon} \quad .$$