Dr. Z.'s Number Theory Homework assignment 16

Version of Oct. 31, 2013 [PLEASE DISREGARD EARLIER VERSION]

- **1.** Check Euler's theorem for (a.) n = 15 (b.) n = 24 (c.) n = 21
- **2.** For the following primes p and q (let n = pq) public key e, and encrypted message c
- (i) Check that e is an OK key, i.e. that it is coprime to $\phi(n)$.
- (ii) Find the deciphering key, d, such that $de \equiv 1 \pmod{\phi(n)}$
- (iii) Suppose Alice sent you the encrypted message c. Check that this is an OK message (coprime to n), and if it is find her original message?, m

a.
$$p = 11$$
 , $q = 7$, $e = 7$, $c = 20$

b.
$$p = 11$$
 , $q = 5$, $e = 9$, $c = 19$

c.
$$p = 3$$
 , $q = 13$, $e = 7$, $c = 16$

d.
$$p = 7$$
 , $q = 17$, $e = 5$, $c = 11$

e.
$$p = 7$$
 , $q = 17$, $e = 3$, $c = 11$

f.
$$p = 7$$
 , $q = 17$, $e = 5$, $c = 17$

3. State and prove Euler's Theorem.