Dr. Z.'s Number Theory Homework assignment 11

1.	Using	the	first	way,	find	the	unique	\boldsymbol{x}	between	0	and	34	such	that	
----	-------	-----	-------	------	------	-----	--------	------------------	---------	---	-----	----	------	------	--

a.

$$x \equiv 4 \pmod{5}$$
 , $x \equiv 2 \pmod{7}$.

b.

$$x \equiv 1 \pmod{5}$$
 , $x \equiv 6 \pmod{7}$.

c.

$$x \equiv 2 \pmod{5}$$
 , $x \equiv 5 \pmod{7}$.

2. Using the second way (the formula) find the unique x between 0 and 34 such that

a.

$$x \equiv 4 \pmod{5}$$
 , $x \equiv 2 \pmod{7}$.

b.

$$x \equiv 1 \pmod{5}$$
 , $x \equiv 6 \pmod{7}$.

c.

$$x \equiv 2 \pmod{5}$$
 , $x \equiv 5 \pmod{7}$.

3. Using the make-a-table way, find the unique x between 0 and 59 such that

a.

$$x \equiv 3 \pmod{4}$$
 , $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$.

b.

$$x \equiv 2 \pmod{4}$$
 , $x \equiv 1 \pmod{3}$, $x \equiv 4 \pmod{5}$.

 $\mathbf{c}.$

$$x \equiv 3 \pmod{4}$$
 , $x \equiv 0 \pmod{3}$, $x \equiv 1 \pmod{5}$.

4. Using the formula, find the unique x between 0 and 2001 such that

$$x\equiv 1\pmod 2\quad,\quad x\equiv 5\pmod 7\quad,\quad x\equiv 6\pmod {11}\quad,\quad x\equiv 4\pmod {13}\quad.$$

5. Use any method to find the smallest non-negative integer x such that

$$x\equiv 3\pmod{1024}\quad,\quad x\equiv 3\pmod{121}\quad,\quad x\equiv 3\pmod{169}\quad,\quad x\equiv 3\pmod{17}\quad,\quad x\equiv 3\pmod{529}\quad.$$