Dr. Z.’s Number Theory Lecture 9 Handout: Modular Arithmetics

By Doron Zeilberger

Version of Oct. 3, 2013 (thanks to Josefina Mansour, who corrected two typos, or rather arithematical errors that I committed by doing ‘mental math’). She gets a prize of one dollar.

If it now eleven O’clock (at night), what time is it going to be two hours later? Not thirteen O’clock, but rather one O’clock.

Def.: \(a \pmod{b} \) is the remainder obtained by dividing \(a \) by \(b \).

Problem 9.1: Find

i. \(11 \pmod{5} \) ii. \(101 \pmod{27} \) iii. \(1001 \pmod{91} \)

Solution of 9.1

i. \(11 = 2 \cdot 5 + 1 \) (the quotient, 2, is irrelevant!), the remainder is 1, so \(11 \pmod{5} = 1 \)

ii. \(101 = 3 \cdot 27 + 20 \) (the quotient 3 is irrelevant!), the remainder is 20, so \(101 \pmod{27} = 20 \)

iii. \(1001 = 11 \cdot 91 + 0 \) (the quotient 11 is irrelevant!), the remainder is 0, so \(1001 \pmod{91} = 0 \).

Def.: If \(a \pmod{c} = b \pmod{c} \) then we write \(a \equiv b \pmod{c} \), and say that \(a \) and \(b \) are congruent modulo \(c \). Of course this happens whenever \((a - b) \) is divisible by \(c \).

Problem 9.2: True or False?

i. \(5 \equiv 70 \pmod{13} \) ii. \(11 \equiv 101 \pmod{15} \)

Sol. to 9.2: i. \(70 - 5 = 65 \) is divisible by 13, so true. i. \(101 - 11 = 90 \) is divisible by 15, so true.

How to add modulo \(m \)

To find \(a + b \pmod{m} \).

Step 1: Find \(a \pmod{m} \) and \(b \pmod{m} \)

Step 2: Add them up

Step 3: Take the remainder upon dividing by \(m \).

Note: If you first add-up \(a \) and \(b \), and only take the remainder at the end, you would get the correct answer (if you didn’t make a mistake), but it would take longer.

Problem 9.3: Find \(1001 + 9001 \pmod{1000} \).
Sol. to 9.3: 1001 (mod 1000) = 1, 9001 (mod 1000) = 1, so the answer is 1 + 1 (mod 1000) = 2 (mod 1000) = 2.

Ans. to 9.3: 2 (mod 1000).

Problem 9.4: Find 1901 + 9901 (mod 1000).

Sol. to 9.4: 1901 (mod 1000) = 901, 9901 (mod 1000) = 901, so the answer is 901 + 901 (mod 1000) = 1802 (mod 1000) = 802.

Ans. to 9.4: 802 (mod 1000).

How to multiply modulo m

To find $a \cdot b \pmod{m}$.

Step 1: Find $a \pmod{m}$ and $b \pmod{m}$

Step 2: Multiply them up

Step 3: Take the remainder upon dividing by m.

Note: If you first multiply a and b, and only take the remainder at the end, you would get the correct answer (if you didn’t make a mistake), but it would take much longer.

Problem 9.5: Find $1901 \cdot 9901 \pmod{1000}$.

Sol. to 9.5: 1901 (mod 1000) = 901, 9901 (mod 1000) = 901, so the answer is 901 \cdot 901 (mod 1000) = 81181 (mod 1000) = 181.

Ans. to 9.5: 181 (mod 1000).

How to raise to a power modulo m (Slow way)

To find $a^n \pmod{m}$.

Find, in turn a, a^2, a^3, \ldots, a^n but each time, take it modulo m.

Note: If you first compute a^n and only take the remainder of division by m at the very end, you would get the correct answer (if you didn’t make a mistake), but it would take you much longer.

Problem 9.6: Find $10^{10} \pmod{13}$ using the slow way.

Sol. to 9.6:

$10^2 \pmod{13} = 100 \pmod{13} = 9 \pmod{13}$

$10^3 \pmod{13} = 90 \pmod{13} = 12 \pmod{13}$
10^4 \pmod{13} = 120 \pmod{13} = 3 \pmod{13}
10^5 \pmod{13} = 30 \pmod{13} = 4 \pmod{13}
10^6 \pmod{13} = 40 \pmod{13} = 1 \pmod{13}
10^7 \pmod{13} = 10 \pmod{13} = 10 \pmod{13}
10^8 \pmod{13} = 100 \pmod{13} = 9 \pmod{13}
10^9 \pmod{13} = 90 \pmod{13} = 12 \pmod{13}
10^{10} \pmod{13} = 120 \pmod{13} = 3 \pmod{13}

Ans. to 9.5: \(3 \pmod{13}\).

How to raise to a power modulo m (Fast way)

To find \(a^n \pmod{m}\).

If \(n\) is even, first find \(b := a^{n/2} \pmod{m}\), and then compute \(b^2 \pmod{m}\).

If \(n\) is odd, first find \(b := a^{n-1} \pmod{m}\), and then compute \(a \cdot b \pmod{m}\).

Problem 9.7: Find \(10^{10} \pmod{13}\) using the fast way.

Solution to Problem 9.7:

Downhill journey

Since the power (exponent), \(n = 10\), is even, we must first find \(10^5 \pmod{13}\), and then square it, modulo 13.

Since 5 is odd, we must first find \(10^4 \pmod{13}\), and then multiply it by 10, modulo 13.

Since 4 is even, we must first find \(10^2 \pmod{13}\), and then square it, modulo 13.

Since 2 is even, we must first find \(10^1 \pmod{13}\), and then square it, modulo 13.

Back journey (uphill)

\(10^1 \pmod{13} = 10,\)
\(10^2 \pmod{13} = 100 \pmod{13} = 9.\)
\(10^4 \pmod{13} = 9^2 \pmod{13} = 81 \pmod{13} = 3 \pmod{13}\)
\(10^5 \pmod{13} = 3 \cdot 10 \pmod{13} = 30 \pmod{13} = 4 \pmod{13}\)
$10^{10} \pmod{13} = 4^2 \pmod{13} = 16 \pmod{13} = 3 \pmod{13}$

Ans. to 9.7: 3 \pmod{13}

Another Fast Way: Write n in binary

$$n = \sum_{i=1}^{k} 2^{c_i}$$

where $0 \leq c_1 < c_2 < \ldots < c_k$ are the powers of 2 that show up (the places where there are 1's in the binary expansion of n). Let $a_k = K$.

Then prepare a table of $a, a^2, a^4, a^8, \ldots, a^{2^k}$ by repeated squaring, and at the end do

$$a^n = \prod_{i=1}^{k} a^{c_i}$$

Problem 9.8: Find $10^{10} \pmod{13}$ using the other fast way.

Sol. to 9.8: $10 = 2^3 + 2^1$.

$10^2 \pmod{13} = 9$

$10^4 \pmod{13} = 9^2 \pmod{13} = 3 \pmod{13}$

$10^8 \pmod{13} = 3^2 \pmod{13} = 9 \pmod{13}$

Finally

$$10^{10} \pmod{13} = (10^8 \pmod{13}) \cdot (10^2 \pmod{13}) = 9 \cdot 9 \pmod{13} = 3 \pmod{13}$$

Ans. to 9.8: 3 \pmod{13}