The Original Euclidean Algorithm

Input: Two positive integers \(a \) and \(b \), with \(a > b \).

Output: The positive integer \(\gcd(a, b) \), their greatest common divisor.

If \(b = 0 \) then RETURN \(a \), else find the \(q \) and \(r \) (quotient and remainder) of dividing \(a \) by \(b \):

\[
a = qb + r \quad (0 \leq r < b) ,
\]

then

\[
\gcd(a, b) = \gcd(b, r) .
\]

Keep going until you get \(\gcd(something, 0) \) and the output is \(something \).

Note: The reason that \(\gcd(a, b) = \gcd(b, r) \) is that any common divisor of \(a \) and \(b \) is also a divisor of \(r \) (and hence a common divisor of \(b \) and \(r \)) and vice versa. Hence the greatest common divisors are the same.

Problem 8.1: Find \(\gcd(252, 198) \).

Solution to 8.1:

\[
252 = 1 \cdot 198 + 54 , \quad \text{so } r(252, 190) = 54 \text{ and}
\]

\[
\gcd(252, 198) = \gcd(198, 54) ;
\]

\[
198 = 3 \cdot 54 + 36 \quad \text{so } r(198, 54) = 36 \text{ and}
\]

\[
\gcd(198, 54) = \gcd(54, 36) ;
\]

\[
54 = 1 \cdot 36 + 18, \quad \text{so } r(54, 36) = 18 \text{ and}
\]

\[
\gcd(54, 36) = \gcd(36, 18) ;
\]

\[
36 = 2 \cdot 18 + 0, \quad \text{so } r(36, 18) = 0 \text{ and}
\]

\[
\gcd(36, 18) = \gcd(18, 0).
\]

We are done! \(\gcd(18, 0) = 18 \), so

\textbf{Ans. to 8.1: } \(\gcd(252, 198) = 18 \).
How to find the gcd of several integers

\(\gcd(a, b, c) = \gcd(a, \gcd(b, c)) \) etc.

Problem 8.2: Find the greatest common divisor of 6, 10, 15.

Solution to 8.2:
\(\gcd(15, 10) = \gcd(10, 5) = \gcd(5, 0) = 5. \)
\(\gcd(6, 5) = \gcd(5, 1) = \gcd(1, 0) = 1. \)

Ans.: \(\gcd(15, 10, 6) = 1. \)

A linear combination of two integers \(a \) and \(b \) is something of the form \(ma + nb \) where \(m \) and \(n \) are integers. Of course any common divisor, of \(a \) and \(b \) is also a divisor of any linear combination, in particular \(\gcd(a, b) \) is a divisor of any linear combination. Thanks to the **Extended Euclidean Algorithm** we know that the greatest common divisor of \(m \) and \(n \) can be expressed as a linear combination of them.

The Extended Euclidean Algorithm

Input: Two positive integers \(a \) and \(b \), with \(a > b \)

Output: The positive integer \(d = \gcd(a, b) \), their greatest common divisor. and integers \(m \) and \(n \) such that

\[d = ma + nb . \]

If \(b = 0 \) then RETURN \(d := a \), and \(d = 1 \cdot a. \)

Else find the \(q \) and \(r \) (quotient and remainder) of dividing \(a \) by \(b \):

\[a = qb + r \quad (0 \leq r < b) , \]

then

\[\gcd(a, b) = \gcd(b, r) . \]

and \(r \) can be expressed as a linear combination of \(a \) and \(b \) as \(r = a - qb \). Every time you get a “new” \(r \), express it as a linear combination of the current \(a \) and \(b \), and then plug-in the expressions of these current \(a \) and \(b \) in terms of the original \(a \) and \(b \). Keep going until you get \(r = 0 \) and the penultimate \(r \) is the gcd, and you have it as a linear combination of the original \(a \) and \(b \).

Problem 8.3: Find \(d = \gcd(39, 14) \) and find integers \(m \) and \(n \) such that \(d = m \cdot 39 + n \cdot 14. \)

Solution to 8.3:

\[39 = 2 \cdot 14 + 11, \]

so \(\gcd(39, 14) = \gcd(14, 11) \) and \(11 = 1 \cdot 39 - 2 \cdot 14 \)

\[14 = 1 \cdot 11 + 3, \text{ so } \]

...
\[\gcd(14, 11) = \gcd(11, 3) \text{ and } 3 = 14 - 11 = 14 - (39 - 2 \cdot 14) = 3 \cdot 14 - 39; \]

11 = 3 \cdot 3 + 2, so

\[\gcd(11, 3) = \gcd(3, 2) \text{ and } 2 = 11 - 3 \cdot 3 = (39 - 2 \cdot 14) - 3(3 \cdot 14 - 39) = 4 \cdot 39 - 11 \cdot 14 \]

3 = 1 \cdot 2 + 1, so

\[\gcd(3, 2) = \gcd(2, 1) \text{ and } 1 = 3 - 1 \cdot 2 = (3 \cdot 14 - 39) - (4 \cdot 39 - 11 \cdot 14) = 14 \cdot 14 - 5 \cdot 39 \]

2 = 2 \cdot 1 + 0, so

\[\gcd(2, 1) = \gcd(1, 0) = 1 \text{ and } 1 = -5 \cdot 39 + 14 \cdot 14 \]

Ans. to 8.3: \(\gcd(29, 14) = 1 \) and \(1 = -5 \cdot 39 + 14 \cdot 14 \) (so \(m = -5, n = 14 \)).