Dr. Z.'s Number Theory Lecture 6 Handout: The Fundamental Theorem of Arithmetic

By Doron Zeilberger

The prime numbers are the **atoms** of multiplication.

Fundamental Theorem of Arithmetic

Every positive integer n can be written **uniquely** as a product of primes or prime-powers, i.e. for some $k \ge 1$

$$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k} \quad ,$$

where a_1, \ldots, a_k are positive integers, and $p_1 < p_2 < \ldots < p_k$ are primes.

How to do it?

Input: A positive integer n.

Output: A list of pairs $L(n) = [p_1, a_1], [p_2, a_2], \ldots, [a_k, b_k]$ $(k \ge 0, p_i, primes, a_i positive integers, and <math>p_1 < p_2 < \ldots < p_k$, such that

$$n = p_1^{a_1} \cdots p_k^{a_k} \quad .$$

If n = 1 then output the **empty list**: NOTHING.

Let p be the smallest prime divisible by n. Let a be the largest integer such that n/p^a is an integer (i.e. that p^a is divisible by n). Then

$$L(n) = [p, a], L(n/p^a)$$

Problem 6.1: Find the prime-power decomposition of 495.

Solution of 6.1: 2 is not divisible by 495, but 3 is. 3^2 is divisible by 495 but 3^3 is not, so p = 3, a = 2. So

$$L(495) = [3, 2], L(495/3^2) = [3, 2], L(55)$$
.

The smallest prime that divides 55 is 5. 55 is not divisible by 5^2 , so, since 55/5 = 11

$$L(55) = [5, 1], L(11)$$
.

11 is not divisible by 7, but is divisible by 11 (in fact it is) 11. 11 is not divisible by 11^2 so p = 7, a = 1, since $11/11^1 = 1$

$$L(11) = [11, 1], L(1)$$

Now it is time for the **backwards** journey. Of course L(1) is the empty list, so

$$L(11) = [11, 1]$$
,

$$L(55) = [5, 1], L(11) = [5, 1], [11, 1]$$

$$L(495) = [3, 2], L(55) = [3, 2], [5, 1], [11, 1]$$
.

Ans. to 6.1: L(495) = [3, 2], [5, 1], [11, 1], or in, humanese

$$495 = 3^2 \cdot 5 \cdot 11$$
.

The **existence** follows immediately from the **algorithm**, but so does **uniqueness** (in spite of what Euclid or wikipedia would tell you). The **smallest** prime divisible by n, and the **largest power** of p divisible by n are both well-defined and unique, so both existence and uniqueness follow by induction.

Multiplying integers given in "product of prime-powers format"

Simply multiply them, simplify the powers, and rearrange in order of increasing primes.

Problem 6.2: Find the product-of-primes-representation of $105 \cdot 2002$, by first doing it for 105 and 2002 (rather than for 210210.

Solution of 6.2:

$$105 = 3 \cdot 5 \cdot 7$$

$$2002 = 2 \cdot 7 \cdot 11 \cdot 13$$

So

$$105 \cdot 1001 = (3 \cdot 5 \cdot 7) \cdot (2 \cdot 7 \cdot 11 \cdot 13) = 2 \cdot 3 \cdot 7^{2} \cdot 11 \cdot 13 \quad .$$

Ans. to 6.2: The product-of-prime-powers representation of $105 \cdot 2002$ is $2 \cdot 3 \cdot 7^2 \cdot 11 \cdot 13$, or in list notation

$$[2,1], [3,1], [7,2], [11,1], [13,1]$$
.