By Doron Zeilberger

The Fibonacci numbers are defined by the initial conditions

$$F_0 = 0$$
 , $F_1 = 1$,

and for $n \ge 2$ by

$$F_n = F_{n-1} + F_{n-2} \quad .$$

Problem 3.1: Write down F_n for $1 \le n \le 5$

Solution to 3.1:

$$F_{2} = F_{2-1} + F_{2-2} = F_{1} + F_{0} = 1 + 0 = 1 \quad .$$

$$F_{3} = F_{3-1} + F_{3-2} = F_{2} + F_{1} = 1 + 1 = 2 \quad .$$

$$F_{4} = F_{4-1} + F_{4-2} = F_{3} + F_{2} = 2 + 1 = 3 \quad .$$

$$F_{5} = F_{5-1} + F_{5-2} = F_{4} + F_{3} = 3 + 2 = 5 \quad .$$

Combinatorial Meaning of the Fibonacci Numbers

 $f_n = F_{n+1}$ is the number of ways of walking from 0 to n where the distance between consecutive stops is either 1 or 2. For example:

 $1:\{01\}$,

- $2: \{012, 02\}$
- $3: \{0123, 013, 023\}$,

,

 $4: \{01234, 0134, 0234, 0124, 024\}$, etc.

Proof: $f_0 = 1, f_1 = 1$. Look at the set of ways of going from 0 to n. The previous step before n was either n - 2 (f_{n-2} ways), or n - 1 (f_{n-1} ways), adding these we get

$$f_n = f_{n-1} + f_{n-2}$$
 .

Problem 3.2: List all the 1-2 walks from 0 to 5. Count them and make sure that you get $f_5 = F_6$.

Solution of 3.2:

 $5: \{012345, 01345, 02345, 01245, 0245, 01235, 0135, 0235\}$

There are 8 walks, and $f_5 = F_6 = 8$.

Binet's formula If $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$, then

$$F_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n)$$

Important facts:

$$\alpha\beta = -1$$
 , $\alpha + \beta = 1$, $\alpha - \beta = \sqrt{5}$, $\alpha^2 - \alpha - 1 = 0$, $\beta^2 - \beta - 1 = 0$

Since $\alpha^2 = \alpha + 1$, we also have $\alpha^3 = \alpha^2 + \alpha = 2\alpha + 1$ $\alpha^4 = 2\alpha^2 + \alpha = 2(\alpha + 1) + \alpha = 3\alpha + 2$, and in general, for any positive integer k:

$$\alpha^k = F_k \cdot \alpha + F_{k-1}$$

and, similarly

$$\beta^k = F_k \cdot \beta + F_{k-1}$$

Problem 3.3: Prove that, for every non-negative integer n we have

$$F_{n+3} + F_n = 2F_{n+2}$$

Solution of 3.3: F_n is a linear combination of α^n and β^n so it is enough to prove that

$$\alpha^{n+3} + \alpha^n - 2\alpha^{n+2} = 0 \quad ,$$

and similarly for β^n . But

$$\alpha^{n+3} + \alpha^n - 2\alpha^{n+2} = \alpha^n (\alpha^3 + 1 - 2\alpha^2)$$

Now $\alpha^2 = \alpha + 1$, $\alpha^3 = 2\alpha + 1$, so this is

$$\alpha^{n}(2\alpha + 1 + 1 - 2(\alpha + 1)) = 0$$

Ditto for β^n .

Problem 3.4: Use the combinatorial model (in terms of paths) to prove that for every positive integer n,

$$F_{2n+1} = F_{n+1}^2 + F_n^2 \quad .$$

Solution of 3.4: Since $F_n = f_{n-1}$ we have to prove that

$$f_{2n} = f_n^2 + f_{n-1}^2$$

The left side counts all the paths from 0 to 2n. There are two cases. Those that skip over n (giving two paths, one from 0 to n-1, and another from n+1 to 2n, altogether f_{n-1}^2 possibilities), and those that stop at n (giving two paths, one from 0 to n, and another from n to 2n, altogether f_n^2 possibilities). Since these are only two options, we have $f_{2n} = f_n^2 + f_{n-1}^2$.

Zeilberger-style proofs. For any Fibonacci identity, there is a (usually rather small) integer N_0 , such that checking it for $1 \le n \le N_0$ implies it (rigorously!) for all n. How to find the N_0 is beyond the scope of this class, so it will be given to you.

Problem 3.5: Give a Zeilberger-style proof of Cassini's identity

$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n$$

You may take $N_0 = 4$.

Solution of 3.5:

$$\begin{split} F_{1+1}F_{1-1} - F_1^2 &= F_2F_0 - F_1^2 = 1 \cdot 0 - 1^2 = -1 = (-1)^1 \quad , \\ F_{2+1}F_{2-1} - F_2^2 &= F_3F_1 - F_2^2 = 2 \cdot 1 - 1^2 = 1 = (-1)^2 \quad , \\ F_{3+1}F_{3-1} - F_3^2 &= F_4F_2 - F_3^2 = 3 \cdot 1 - 2^2 = -1 = (-1)^3 \quad , \\ F_{4+1}F_{4-1} - F_4^2 &= F_5F_3 - F_4^2 = 5 \cdot 2 - 3^2 = 1 = (-1)^4 \quad . \end{split}$$

QED!

 $\mathbf{3}$