Important Definition: a is a quadratic residue mod n is there is an integer x, $0 \leq x < n$ such that
\[x^2 \equiv a \pmod{n} \].

Otherwise it is a quadratic non-residue.

Note: every congruence class between 0 and $n - 1$ (inclusive) is either a quadratic residue or a quadratic non-residue.

Note: 0 is trivially a quadratic residue, since $0^2 = 0$.

How to find the set of quadratic residues modulo an integer?

Simple! Just compute the set
\[\{ x^2 \pmod{n} \mid 0 \leq x \leq n - 1 \} \]

But, since $(-x)^2 = x^2$, you only need to compute
\[\{ x^2 \pmod{n} \mid 0 \leq x \leq (n - 1)/2 \} \]

The set of quadratic non-residues is the complement
\[\{ x \mid 0 \leq x \leq n - 1 \} \setminus \{ x^2 \pmod{n} \mid 0 \leq x \leq (n - 1)/2 \} \]

Problem 20.1: Find the set of quadratic residues of $n = 13$. Also find the set of non-quadratic residues.

Solution to 20.1:

\[\text{QuadraticResiduesMod}(13) = \{0^2, 1^2, 2^2, 3^2, 4^2, 5^2, 6^2\} \pmod{13} \]
\[= \{0, 1, 4, 9, 16, 25, 36\} \pmod{13} \]
\[= \{0, 1, 4, 9, 3, 12, 10\} = \{0, 1, 3, 4, 9, 10, 12\} \).

The set of non-quadratic residues is the complement
\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \setminus \{0, 1, 3, 4, 9, 10, 12\} = \{2, 5, 6, 7, 8, 11\} \).
Ans. to 20.1: The set of quadratic residues modulo 13 is \(\{0, 1, 3, 4, 9, 10, 12\} \). The set of quadratic non-residues modulo 13 is \(\{2, 5, 6, 7, 8, 11\} \).

Simple but important fact: If \(p \) is an odd prime, except for 0, there are as many quadratic residues as quadratic non-residues.

Proof: If \(0 < x, y \leq (p - 1)/2 \), and \(x^2 \equiv y^2 \pmod{p} \) then \(x^2 - y^2 \) is divisible by \(p \). So \((x - y)(x + y) \) must be divisible by \(p \). But \(0 < x + y < p \) so \(x - y = 0 \), so \(x = y \), and the \((p - 1)/2 \) elements
\[
1^2, \quad 2^2, \quad \ldots \quad ((p - 1)/2)^2
\]
are all different. Hence the set
\[
\{x^2 \pmod{n} \mid 0 \leq x \leq (n - 1)/2\}
\]
has \((p - 1)/2 \) elements, and the complement has \((p - 1) - (p - 1)/2 = (p - 1)/2 \) elements.

Important Notation:

\(a R n \) means that \(a \) is a quadratic residue modulo \(n \).

\(a N n \) means that \(a \) is not a quadratic residue modulo \(n \).

Important Notation (The Legendre symbol).
\[
\left(\frac{a}{p} \right) := \begin{cases}
0, & \text{if } a = 0; \\
1, & \text{if } a R p; \\
-1, & \text{if } a N p.
\end{cases}
\]

If \(p \) is very big, and we want to find out whether a certain \(r \), between 1 and \(p - 1 \), is a quadratic residue, of course we can try out all the first \((p - 1)/2 \) possibilities, but this will take a very long time. Since we know, from Lecture 9 how to to exponentiate (modulo \(p \)) very fast, here is a much better way.

Important Test: \(r \) is a quadratic residue mod an odd prime iff \(r^{(p - 1)/2} \equiv 1 \pmod{p} \).

Problem 20.2: Using the important test (no credit for brute force!) find \(\left(\frac{5}{17} \right) \).

Sol. of 20.2: Here \(r = 5 \) and \(p = 17 \), \((p - 1)/2 = 8 \). We need
\[
5^8 \pmod{17}.
\]

\[
5^2 \equiv 8 \pmod{17}.
\]

\[
5^4 \equiv 8^2 \pmod{17} \equiv -4 \pmod{17}
\]
(since the remainder of dividing 64 by 17 is 13 and it is more convenient to write it as \(-4\))

\[
5^8 \equiv (-4)^2 \pmod{17} \equiv 16 \equiv -1 \pmod{17}.
\]

Since we got \(-1\) (BTW, you always get either 1 or \(-1\), if \(r \neq 0\), it is not not a quadratic residue.

Ans. to 20.2: \(\left(\frac{5}{17}\right) = -1\).

But there is an even quicker way, using some rules.

Rule 1: If \(p\) is an odd prime and \(a\) and \(b\) are not multiples of \(p\), then

\[
\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right).
\]

Rule 2: If \(p\) is an odd prime then

\[
\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.
\]

Rule 3: If \(p\) is an odd prime then

\[
\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}.
\]

FINALLY, One of the **MOST FAMOUS** results in Number theory

Rule 4: (THE QUADRATIC-RECI PROCITY LAW)

If \(p\) and \(q\) are distinct odd primes, then

\[
\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.
\]

Problem 20.3: Using the Quadratic Reciprocity Law (no credit for other methods) and Rules 1-3, find

\[
\left(\frac{13}{101}\right)
\]

Sol. to 20.3: By QRL

\[
\left(\frac{13}{101}\right) \left(\frac{101}{13}\right) = (-1)^{(13-1)(101-1)/4} = 1.
\]
So
\[
\left(\frac{13}{101} \right) = \left(\frac{101}{13} \right) = \left(\frac{10}{13} \right) = \left(\frac{2}{13} \right) \left(\frac{5}{13} \right).
\]

But $101 \mod 13 = 10$, so
\[
\left(\frac{13}{101} \right) = \left(\frac{10}{13} \right) = \left(\frac{2}{13} \right) \left(\frac{5}{13} \right).
\]

By Rule 3,
\[
\left(\frac{2}{13} \right) = (-1)^{(13^2-1)/8} = (-1)^{168}/8 = (-1)^{21} = -1.
\]

Using the QRL once again
\[
\left(\frac{5}{13} \right) \left(\frac{13}{5} \right) = (-1)^{(13-1)(5-1)/4} = 1.
\]

So
\[
\left(\frac{5}{13} \right) = \left(\frac{13}{5} \right) = \left(\frac{3}{5} \right).
\]

Using QRL one more time:
\[
\left(\frac{3}{5} \right) \left(\frac{5}{3} \right) = (-1)^{(3-1)(5-1)/4} = 1.
\]

So
\[
\left(\frac{3}{5} \right) = \left(\frac{5}{3} \right) = \left(\frac{2}{3} \right).
\]

Now we use Rule 3:
\[
\left(\frac{2}{3} \right) = (-1)^{(3^2-1)/8} = -1.
\]

Going back we have
\[
\left(\frac{3}{5} \right) = -1
\]
\[
\left(\frac{5}{13} \right) = -1
\]

and finally,
\[
\left(\frac{13}{101} \right) = (-1)(-1) = 1.
\]

Ans. to 20.3: \(\left(\frac{13}{101} \right) = 1 \).

(In words: 13 is a quadratic residue modulo 101).

Note: The Four rules will be given to you on a test or quiz, so you don’t have to memorize them, only how to use them.