Incomplete Induction: Looking at several cases, detecting a pattern, and generalizing.

Problem 2.1: Guess a nice formula for

\[S(n) := 1 + 3 + 5 + \ldots + (2n - 1) = \sum_{i=1}^{n} 2i - 1. \]

Solution to 2.1: \(S(1) = 1, S(2) = 1 + 3 = 4, S(3) = 1 + 3 + 5 = 9, S(4) = 1 + 3 + 5 + 9 = 16, \) but these are all perfect squares! \(S(1) = 1, S(2) = 2^2, S(3) = 3^2, S(4) = 4^2. \) So we conjecture that for every integer \(n \geq 0, \)

\[S(n) = n^2. \]

Complete Mathematical Induction

Fundamental Theorem of Discrete Calculus

If \(a(i) \) and \(S(n) \) are any expressions, in order to prove for every \(n \geq 0 \) that

\[S(n) = \sum_{i=1}^{n} a(i) \]

(alias: \(S(n) = a(1) + \ldots + a(n) \)), all you need is to check

(i) \(S(0) = 0 \) (the empty sum is zero!)

(ii) \(S(n) - S(n-1) = a(n) \)

The formal proof is by mathematical induction, but it essentially follows from the definition of \(\sum. \)

Problem 2.2: Prove rigorously that, for every \(n \geq 0, \)

\[\sum_{i=1}^{n} (2i - 1) = n^2. \]

Solution of 2.2: Here \(a(i) = 2i - 1, S(n) = n^2. \) By the fundamental theorem of discrete calculus, we need to show

\[S(0) = 0, \quad S(n) - S(n-1) = a(n). \]

Using arithmetic and algebra, \(S(0) = 0^2 = 0 \) and \(S(n) - S(n-1) = n^2 - (n-1)^2 = n^2 - (n^2 - 2n + 1) = 2n - 1. \) But since \(a(i) = 2i - 1 \) (and \(i \) is but a place-holder), we have \(a(n) = 2n - 1. \) Hence \(S(n) - S(n-1) = a(n). \) QED!
First Important Fact: If \(a(i) \) is a polynomial of \(i \) of degree \(d \), then the indefinite sum
\[
S(n) = \sum_{i=1}^{n} a(i)
\]
(alias \(a(1) + a(2) + \ldots + a(n) \)) is a polynomial of \(n \) of degree \(d + 1 \).

Second Important Fact: If a polynomial of degree \(\leq d \) vanishes at \(d + 1 \) different places, it is identically zero (i.e. the 0 polynomial).

Immediate Consequence: If two polynomials of degree \(\leq d \) coincide at \(d + 1 \) different places, they are always the same.

Zeilberger-Style (FULLY RIGOROUS) Proofs of Indefinite Polynomial Sum Identities

In order to rigorously prove an identity of the form
\[
S(n) = \sum_{i=1}^{n} a(i)
\]
where \(a(i) \) is a polynomial of degree \(d \) and \(S(n) \) is a polynomial of degree \(\leq d + 1 \), it is enough to check it for the \(d + 2 \) special cases \((n = 0, n = 1, \ldots, n = d + 1) \).

Note: Of course, it is also OK to check it for any other \(d + 2 \) special cases, for example \(n = 5761, n = 5762, \ldots, n = 5761 + d + 1 \), but it would be less convenient.

Problem 2.3: Give a Zeilberger-style (rigorous!) proof of the identity
\[
\sum_{i=1}^{n} (2i - 1) = n^2 .
\]

Solution of 2.3: The summand \(a(i) = 2i - 1 \) is a polynomial of degree 1, and the proposed value of the sum, \(S(n) = n^2 \) is a polynomial of degree 2. So here \(d = 1 \), and in order to prove the identity for every positive integer \(n \), it suffices to prove it for \(n = 0, 1, 2 \).

Now
\[
\sum_{i=1}^{0} (2i - 1) = 0 = 0^2 .
\]
(the empty-sum is always zero).
\[
\sum_{i=1}^{1} (2i - 1) = 1 = 1^2 .
\]
\[
\sum_{i=1}^{2} (2i - 1) = 1 + 3 = 4 = 2^2 .
\]
QED!