
Dr. Z.’s Number Theory Lecture 2 Handout: Incomplete and Complete Mathematical Induction

By Doron Zeilberger

Incomplete Induction: Looking at several cases, detecting a pattern, and generalizing.

Problem 2.1: Guess a nice formula for

S(n) := 1 + 3 + 5 + . . . + (2n− 1) (=
n∑

i=1

2i− 1).

Solution to 2.1: S(1) = 1, S(2) = 1 + 3 = 4, S(3) = 1 + 3 + 5 = 9, S(4) = 1 + 3 + 5 + 9 = 16, but
these are all perfect squares! S(1) = 1, S(2) = 22, S(3) = 32, S(4) = 42. So we conjecture that
for every integer n ≥ 0,

S(n) = n2 .

Complete Mathematical Induction

Fundamental Theorem of Discrete Calculus

If a(i) and S(n) are any expressions, in order to prove for every n ≥ 0 that

S(n) =
n∑

i=1

a(i)

(alias: S(n) = a(1) + . . . + a(n)), all you need is to check

(i) S(0) = 0 (the empty sum is zero!)

(ii) S(n)− S(n− 1) = a(n)

The formal proof is by mathematical induction, but it essentially follows from the definition of
∑

.

Problem 2.2: Prove rigorously that , for every n ≥ 0,

n∑
i=1

(2i− 1) = n2 .

Solution of 2.2: Here a(i) = 2i− 1, S(n) = n2. By the fundamental theorem of discrete calculus,
we need to show

S(0) = 0 , S(n)− S(n− 1) = a(n) .

Using arithmetic and algebra, S(0) = 02 = 0 and S(n)−S(n−1) = n2−(n−1)2 = n2−(n2−2n+1) =
n2−n2+2n−1 = 2n−1. But since a(i) = 2i−1 (and i is but a place-holder), we have a(n) = 2n−1.
Hence S(n)− S(n− 1) = a(n). QED!
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First Important Fact: If a(i) is a polynomial of i of degree d, then the indefinite sum

S(n) =
n∑

i=1

a(i)

(alias a(1) + a(2) + . . . + a(n)) is a polynomial of n of degree d + 1.

Second Important Fact: If a polynomial of degree ≤ d vanishes at d + 1 different places, it is
identically zero (i.e. the 0 polynomial).

Immediate Consequence: If two polynomials of degree ≤ d coincide at d + 1 different places,
they are always the same.

Zeilberger-Style (FULLY RIGOROUS) Proofs of Indefinite Polynomial Sum Identities

In order to rigorously prove an identity of the form

S(n) =
n∑

i=1

a(i) ,

where a(i) is a polynomial of degree d and S(n) is a polynomial of degree ≤ d + 1, it is enough to
check it for the d + 2 special cases (n = 0, n = 1, . . . , n = d + 1).

Note: Of course, it is also OK to check it for any other d + 2 special cases, for example n =
5761, n = 5762, . . . , n = 5761 + d + 1, but it would be less convenient.

Problem 2.3: Give a Zeilberger-style (rigorous!) proof of the identity

n∑
i=1

(2i− 1) = n2 .

Solution of 2.3: The summand a(i) = 2i− 1 is a a polynomial in i of degree 1, and the proposed
value of the sum, S(n) = n2 is a polynomial in n of degree 2. So here d = 1, and in order to prove
the identity for every positive integer n, it suffices to prove it for n = 0, 1, 2.

Now
0∑

i=1

(2i− 1) = 0 = 02 .

(the empty-sum is always zero).
1∑

i=1

(2i− 1) = 1 = 12 .

2∑
i=1

(2i− 1) = 1 + 3 = 4 = 22 .

QED!
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