By Doron Zeilberger

Wilson’s Theorem: If \(n > 1 \) is a natural number, \((n - 1)! \equiv -1 \pmod{n}\) iff \(n\) is a prime.

Problem 13.1: Check empirically Wilson’s theorem for (i) \(n = 6 \) and (ii) \(n = 7 \).

Solution of 13.1:
(i) \(5! \pmod{6} = 120 \equiv 0 \pmod{6}\), and this is **not** \(-1 \equiv \pmod{6}\).
(ii) \(6! \pmod{7} = 720 \equiv 721 - 1 \pmod{7} \equiv 7 \cdot 103 - 1 \equiv -1 \pmod{7}\).

Proof of Wilson’s theorem for \(n \) composite: If \(n \) is composite, it is divisible by some prime \(q \), \(2 \leq q \leq n - 2\). So \((n - 1)!\) is divisible by \(q\). But if \((n - 1)! \equiv -1 \pmod{n}\) then \((n - 1)! \equiv -1 \pmod{q}\), contradiction.

Proof for \(n \) prime: We have to show that if \(p \) is prime then \((p - 1)! \equiv -1 \pmod{p}\).

For \(p = 2 \): \(1! \equiv -1 \pmod{2}\).
If \(p > 2 \), then for any \(a, 1 \leq a \leq p - 1 \), there exists a \(b, 1 \leq b \leq p - 1 \), such that \(ab \equiv 1 \pmod{p} \) (recall that it called the multiplicative inverse, denoted by \(a^{-1} \pmod{p}\)). If \(a \equiv a^{-1} \pmod{p} \) then \(a^2 - 1 \equiv 0 \pmod{p} \), so \((a - 1)(a + 1) \equiv 0 \pmod{p}\) that has two roots modulo \(p\): \(a \equiv 1 \pmod{p}\), and \(a \equiv -1 \pmod{p}\). So, we can arrange all the integers \(1, 2, \ldots, p - 1\), except for \(1\) and \(p - 1\), into pairs \(\{a, b\}\), such that \(ab \equiv 1 \pmod{p}\) except for \(1\) and \(p - 1\) whose product is \(-1 \pmod{p}\).

Problem 13.2: Illustrate the proof of Wilson’s theorem for \(p = 13 \).

Solution to 13.2:
\[
\begin{align*}
2^{-1} \pmod{13} &= 7 , & 3^{-1} \pmod{13} &= 9 , & 4^{-1} \pmod{13} &= 10 , \\
5^{-1} \pmod{13} &= 8 , & 6^{-1} \pmod{13} &= 11 .
\end{align*}
\]
So
\[
12! = (1 \cdot 12)(2 \cdot 7)(3 \cdot 9)(4 \cdot 10)(5 \cdot 8)(6 \cdot 11) \equiv (-1)(1)(1)(1)(1)(1) \pmod{13} \equiv -1 \pmod{13} .
\]

Fermat’s little theorem:
If \(p \) is a prime number, then for any integer \(a \), \((a^p - a)/p\) is always an integer. In other words
\[
a^p \equiv a \pmod{p} .
\]
Problem 13.3: Check, empirically, Fermat’s little theorem for \(p = 7 \).

Solution to 13.3:

\((1^7 - 1)/7 = 1\)

\((2^7 - 2)/7 = 126/7 = 18\)

\[3 \pmod{7} = 3 \] , \[3^2 \pmod{7} = 2 \] , \[3^4 \pmod{7} = 2^2 = 4 \pmod{7} \]

So

\[3^7 \pmod{7} = 3^4 \cdot 3^2 \cdot 3 \pmod{7} = 4^2 \cdot 3 = 24 \equiv 3 \pmod{7} \]

\[4 \pmod{7} = 4 \] , \[4^2 \pmod{7} = 2 \] , \[4^4 \pmod{7} = 2^2 = 4 \pmod{7} \]

So

\[4^7 \pmod{7} = 4^4 \cdot 4^2 \cdot 4 \pmod{7} = 4^2 \cdot 4 = 32 \equiv 4 \pmod{7} \]

\[5^7 \pmod{7} = (-2)^7 \pmod{7} = -2^7 \pmod{7} = -2 \pmod{7} = 5 \pmod{7} \]

\[6^7 \pmod{7} = (-1)^7 \pmod{7} = -1^7 \pmod{7} = -1 \pmod{7} = 6 \pmod{7} \]

First Proof of Fermat’s little theorem: Recall the binomial theorem

\[(x + 1)^n = x^n + \frac{n}{1} x^{n-1} + \frac{n(n-1)}{1 \cdot 2} x^{n-2} + \ldots + \frac{n(n-1) \ldots (n-k+1)}{1 \ldots k} x^{n-k} + \ldots + 1 \]

When \(p \) is prime:

\[(x + 1)^p = x^p + \frac{p}{1} x^{p-1} + \frac{p(p-1)}{1 \cdot 2} x^{p-2} + \ldots + \frac{p(p-1) \ldots (p-k+1)}{1 \ldots k} x^{p-k} + \ldots + 1 \]

But \(\frac{p(p-1) \ldots (p-k+1)}{1 \ldots k} \) is always divisible by \(p \), for \(k = 1 \ldots p - 1 \) (why?), so modulo \(p \)

\[(x + 1)^p \equiv x^p + 1 \pmod{p} \]

Starting with the obvious \(0^p \equiv 0 \pmod{p} \), we have \(1^p \equiv 1 \pmod{p} \), \(2^p \equiv 2 \pmod{p} \), and by induction on \(a \), \(a^p \equiv \pmod{p} \), for all \(a \) from 0 to \(p - 1 \), and hence for all \(a \) whatsoever. \(\square \)

Second Proof of Fermat’s little theorem: If \(p = 2 \) it is trivial (why?). If \(a = 0 \) it is also trivial.

2
If \(p > 2 \), and \(1 \leq a \leq p - 1 \), then \(a, 2a, 3a, \ldots, (p - 1)a \), modulo \(p \), are distinct (since if \(ai \equiv aj \) (mod \(p \)) then \(a(i - j) \) is divisible by \(p \), hence \(i - j \) is divisible by \(p \) hence \(i \equiv j \) (mod \(p \)) (and \(i = j \) since we assume that they are between 0 and \(p - 1 \)).

So the product of all the members of \(\{1, 2, \ldots, p - 1\} \) modulo \(p \), (alias \((p - 1)! \) (mod \(p \))) is the same, modulo \(p \), as the product of

\[
a, \quad 2a, \quad \ldots, \quad a(p - 1),
\]

is the same as

\[
(a)(2a)(3a) \cdot ((p - 1)a) = a^{p-1}(p - 1)! \quad (\text{mod } p).
\]

So

\[
a^{p-1}(p - 1)! \equiv (p - 1)! \quad (\text{mod } p)
\]

Since \((p - 1)! \) is not 0 modulo \(p \), we can divide by it, and get that for \(0 < a \leq p - 1 \)

\[
a^{p-1} \equiv 1 \quad (\text{mod } p).
\]

Multiplying both sides by \(a \) proves it. □

Problem 13.4: Illustrate the Second proof of Fermat’s little theorem with \(p = 5 \) and \(a = 3 \).

Solution to 13.4:

\[
3 \cdot 1 \quad (\text{mod } 5) = 3, \quad 3 \cdot 2 \quad (\text{mod } 5) = 1, \quad 3 \cdot 3 \quad (\text{mod } 5) = 4, \quad 3 \cdot 4 \quad (\text{mod } 5) = 2.
\]

Since \([3, 1, 4, 2]\) is a permutation of \([1, 2, 3, 4]\), we have:

\[
(3 \cdot 1)(3 \cdot 2)(3 \cdot 3)(3 \cdot 4) \equiv (1)(2)(3)(4) \equiv
\]

So

\[
3^4 \cdot 4! \equiv 1 \cdot 4! \quad (\text{mod } 5).
\]

Dividing by \(4! = 24 \) (not 0 modulo \(5 \)), we get

\[
3^4 \equiv 1 \quad (\text{mod } 5).
\]

Multiplying both sides by 3, we get

\[
3^5 \equiv 3 \quad (\text{mod } 5).
\]

Third Proof of Fermat’s little theorem: If \(p \) is a prime then \((a^p - a)/p + a \) is the number of necklaces (without a clasp) with \(p \) beads of \(a \) different colors. (See very end of page 10 and very beginning of page 11 of

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/enu.pdf). Since it counts a finite set, it must be an integer.
Problem 13.5: How many necklaces of length 3 are there with red and green beads? Write them all down.

Solution to 13.5: Here $a = 2$ and $p = 3$ so the number of necklaces is $(2^3 - 2)/3 + 2 = 2 + 2 = 4$.

The two necklaces with the same colors are

$$GGG, \quad RRR$$

Let’s first list all 2^3 linear necklaces for length 3 with colors $\{G, R\}$

$$GGG, GGR, GRG, GRR, RGG, RGR, RRG, RRR$$.

The first and last are monochromatic, and the remaining one fall naturally into equivalence classes by rotation.

$$\{GGR, GRG, RGG\}$$, and

$$\{GRR, RRG, RGR\}$$.

Solution to 13.5: There are four necklaces:

$$GGG,$$

$$RRR,$$

$$GGR$$ (alias GRG, alias RGG), and

$$GRR$$ (alias RRG, alias RGR).