MATH 583, Dr. Z., **Problem Set #1**, Mon., Feb. 10, 2003.

Due: Feb. 17, 2003.

Theory:

1)

- a) Write all the partitions of n, in rev. lex. order, (L_n) for $1 \le n \le 5$.
- b) Write all the partitions of n, in lex. order, L'_n . for $1 \le n \le 5$.

c) For $1 \le n \le 5$, compute $L_n \cap L'_n$, and compare it to N_n .

2) Write down, explicitly, $e_i(x_1, x_2, x_3)$ and $h_i(x_1, x_2, x_3)$ for i = 0, 1, 2, 3, 4.

3) For $1 \le n \le 3$, express e_{λ} in terms of m_{μ} 's for all partitions λ of n = 3. By solving for the m_{μ} 's in terms of the e_{λ} 's, express m_{λ} in terms of e_{μ} 's.

Maple

- 1) Write the Maple syntax to express the sequence $\{i^3\}, 1 \leq i \leq n$. using the seq function.
- 2) Write a nested do statement that prints, for every day of the year, the 365 sentences:

'Today is Jan. 1, 2003';

•••

'Today is Dec. 31, 2003';

3) Give examples of while and if statements.