Solutions to Math 477 REAL QUIZ \#9

1. (5 points) You go to a casino in St. Petersburg where you have a chance of 10^{-6} of winning one hundred million rubles, and a chance of $1-10^{-6}$ of losing 10 rubles. You do it for n days, and each time is independent of the other times. If X is the random variable denoting your gain, what is the probability generating function? What is $E[X]$? What is $\operatorname{Var}(X)$?

Sol. to 1: The prob. generating function for one day is

$$
10^{-6} x^{10^{8}}+\left(1-10^{-6}\right) x^{-10}
$$

Hence for n days it is

$$
\left(10^{-6} x^{10^{8}}+\left(1-10^{-6}\right) x^{-10}\right)^{n} .
$$

The expected gain in one day is

$$
10^{-6} \cdot 10^{8}+\left(1-10^{-6}\right) \cdot(-10)=90.00001
$$

Hence the expected gain in n days is $90.00001 n$.
The variance of the gain in one day is

$$
10^{-6} \cdot\left(10^{8}-90.00001\right)^{2}+\left(1-10^{-6}\right) \cdot(-10-90.00001)^{2} \quad \text { APPROXIMATELY } 10^{10}
$$

Hence the variance of the total gain in n days is about $10^{10} n$.
2. (5 points) Let X and Y be the number of hours that a randomly selected person watches movies and sports events, respectively, during a three-month period. The following information is known about X and Y.

$$
E[X]=30 \quad, \quad E[Y]=30 \quad, \quad \operatorname{Var}(X)=20 \quad, \quad \operatorname{Var}(Y)=20 \quad, \quad \operatorname{Cov}(X, Y)=30 .
$$

Four hundred people are randomly selected and observed for these three months. Let T be the total number of hours that these four hundred people watch movies or sports events this three month period.

Approximate the value of $P(T<26000)$.
Sol. to 2: We first need $\operatorname{Var}(X+Y)$.

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=20+20+2 \cdot 30=100
$$

hence $\sigma^{=} 100$ and $\sigma=10$. Also

$$
E[X+Y]=E[X]+E[Y]=30+30=60 .
$$

Hence $\mu=60$ and $\sigma=10$. By the Central limit theorem

$$
T=\sum_{i=1}^{400} T_{i}
$$

is approximately a normal random variable with mean $n \mu=400 \cdot 60=24000$ and standard deviation $\sqrt{n} \sigma=\sqrt{400} \cdot 10=200$. Hence
$P\{T<260000\}=P\{T-24000<26000-24000\}=P\left\{\frac{T-24000}{200}<\frac{26000-24000}{200}\right\}=P\left\{\frac{T-24000}{200}<10\right\}$,
is approximately $P\{Z<10\}$ that equals $\Phi(10)$ that is practically 1 .

