NAME: (print!) \qquad

E-MAIL ADDRESS: (print!)

1. (5 points) You go to a casino in St. Petersburg where you have a chance of 10^{-6} of winning one hundred million rubles, and a chance of $1-10^{-6}$ of losing 10 rubles. You do it for n days, and each time is independent of the other times. If X is the random variable denoting your gain, what is the probability generating function? What is $E[X]$? What is $\operatorname{Var}(X)$?
2. (5 points) Let X and Y be the number of hours that a randomly selected person watches movies and sports events, respectively, during a three-month period. The following information is known about X and Y.

$$
E[X]=30 \quad, \quad E[Y]=30 \quad, \quad \operatorname{Var}(X)=20 \quad, \quad \operatorname{Var}(Y)=20 \quad, \quad \operatorname{Cov}(X, Y)=30 .
$$

Four hundred people are randomly selected and observed for these three months. Let T be the total number of hours that these four hundred people watch movies or sports events this three month period.

Approximate the value of $P(T<26000)$.

