Solutions to Math 477 REAL QUIZ \#8

1. (4 points) In a certain community, the probability that a family has i boys and j girls is given by

$$
p(i, j)=\left\{\begin{array}{l}
\frac{c}{(2 i+3 j+1)}, \quad \text { if } \quad 0 \leq i \leq 1 \quad \text { and } \quad 0 \leq j \leq 1 ; \\
0, \text { otherwise. }
\end{array}\right.
$$

for some positive constant c (that would make it a discrete probability mass function). Calculate the conditional probability mass function for the number of boys in families that have exactly one girl.

Sol. to 1:

$$
\begin{gathered}
P\{G=1\}=p(0,1)+p(1,1)=\frac{c}{2 \cdot 0+3 \cdot 1+1}+\frac{c}{2 \cdot 1+3 \cdot 1+1}=\frac{c}{4}+\frac{c}{6} \\
=c\left(\frac{1}{4}+\frac{1}{6}\right)=\frac{c}{2}\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{c}{2} \cdot \frac{5}{6}=5 c / 12 .
\end{gathered}
$$

Hence

$$
p_{B \mid G}(i \mid 1)=\frac{p(i, j)}{5 c / 12}
$$

Hence

$$
\begin{aligned}
p_{B \mid G}(i \mid 1) & =\left\{\begin{array}{l}
\frac{c}{(2 i+3 \cdot 1+1)(5 c / 12)} \\
0, \quad \text { otherwise. }
\end{array}, \quad \text { if } \quad 0 \leq i \leq 1 ;\right. \\
& =\left\{\begin{array}{l}
\frac{12}{(2 i+4) \cdot 5}, \quad \text { if } 0 \leq i \leq 1 ; \\
0, \text { otherwise. }
\end{array},\right. \\
& =\left\{\begin{array}{l}
\frac{6}{(i+2) \cdot 5}, \quad \text { if } 0 \leq i \leq 1 ; \\
0,
\end{array},\right.
\end{aligned}
$$

Spelling it out: $p_{B \mid G}(0 \mid 1)=\frac{3}{5}, p_{B \mid G}(1 \mid 1)=\frac{2}{5},\left(\right.$ and $p_{B \mid G}(i \mid 1)=0$ if $\left.i \notin\{0,1\}.\right)$
2. (6 points) Using the linearity of expectation, find the average number of places $1 \leq i \leq n$ satisfying $\pi(i) \in\{i, i+1\}$ taken over all permutations of length n.

Sol. to 2: Let X_{i} (for integers i satisfying $1 \leq i \leq n$) be the indicator r.v. (defined on the set of permutations on $\{1, \ldots, n\}$)

$$
X_{i}(\pi)= \begin{cases}1, & \text { if } \pi(i) \in\{i, i+1\} \\ 0, & \text { otherwise }\end{cases}
$$

The probability mass function of X_{i} is very simple. For $1 \leq i \leq n-1$, we have

$$
P\left\{X_{i}=1\right\}=\frac{2}{n} \quad, \quad P\left\{X_{i}=0\right\}=0
$$

This follows from the fact that the probability that $\pi(i)=i$ is $\frac{1}{n}$ and simililarly, that $\pi(i)=i+1$, and these events are mutually exclusive. Since $\pi(n)$ can never be $n+1$, we have to single this case out

$$
P\left\{X_{n}=1\right\}=\frac{1}{n} \quad, \quad P\left\{X_{n}=0\right\}=0
$$

Hence, for $1 \leq i \leq n-1$, we have $E\left[X_{i}\right]=\frac{2}{n} \cdot 1+\left(1-\frac{2}{n}\right) \cdot 0=\frac{2}{n}$. Similarly $E\left[X_{n}\right]=\frac{1}{n}$.
We have, of course

$$
X=\sum_{i=1}^{n} X_{i} .
$$

By linearity of expectation:

$$
E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n-1} E\left[X_{i}\right]+E\left[X_{n}\right]=(n-1) \frac{2}{n}+\frac{1}{n}=\frac{2 n-1}{n} .
$$

Ans. to 2: The average number of places $1 \leq i \leq n$ satisfying $\pi(i) \in\{i, i+1\}$ taken over all permutations of length n, is $\frac{2 n-1}{n}$.

