Solutions to Math 477 REAL QUIZ \#7

1. (6 points) The return on two investments, X and Y, follows the joint density function

$$
f(x, y)=\left\{\begin{array}{l}
\frac{1}{4} \quad, \quad \text { if } 0<x+|y|<2 \quad \text { and } \quad x>0 ; \\
0, \\
\text { otherwise } .
\end{array}\right.
$$

Find the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$ and use them to find $E[X]$ and $E[Y]$.
Sol. to 1: The region where $f(x, y)$ is not zero is a triangle with vertices $(0,-2),(0,2)$, and $(2,0)$.

$$
f_{X}(x)=\int_{x-2}^{2-x} f(x, y) d y=\int_{x-2}^{2-x} \frac{1}{4} d y=\frac{(2-x)-(x-2)}{4}=1-\frac{x}{2} \quad, \quad(0 \leq x \leq 2) .
$$

Of course $f_{X}(x)=0$ outside $0 \leq x \leq 2$.

$$
f_{Y}(y)=\int_{0}^{2-|y|} f(x, y) d x=\int_{0}^{2-|y|} \frac{1}{4} d x=\frac{2-|y|}{4} \quad, \quad(-2 \leq y \leq 2)
$$

Of course $f_{Y}(y)=0$ outside $-2 \leq y \leq 2$.

$$
\begin{gathered}
E[X]=\int_{0}^{2} x f_{X}(x) d x=\int_{0}^{2} x\left(1-\frac{x}{2}\right) d x=\int_{0}^{2}\left(x-\frac{x^{2}}{2}\right) d x=\left.\left(\frac{x^{2}}{2}-\frac{x^{3}}{6}\right)\right|_{0} ^{2}= \\
\frac{\left(2^{2}-0^{2}\right)}{2}-\frac{2^{3}-0^{3}}{6}=2-\frac{4}{3}=\frac{2}{3} . \\
E[Y]=\int_{-2}^{2} y f_{Y}(x) d x=\int_{-2}^{2} y \frac{2-|y|}{4} d y=\int_{-2}^{0} y \frac{2+y}{4} d y+\int_{0}^{2} y \frac{2-y}{4} d y \\
=\int_{-2}^{0} \frac{2 y+y^{2}}{4} d y+\int_{0}^{2} \frac{2 y-y^{2}}{4} d y=\left.\left(\frac{y^{2}}{4}+\frac{y^{3}}{12}\right)\right|_{-2} ^{0}+\left.\left(\frac{y^{2}}{4}-\frac{y^{3}}{12}\right)\right|_{0} ^{2}=0 .
\end{gathered}
$$

Ans. to 1:

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}1-\frac{x}{2} & \text { if } 0 \leq x \leq 2 \\
0, & \text { otherwise }\end{cases} \\
& f_{Y}(y)= \begin{cases}\frac{2-|y|}{2,} & \text { if }-2 \leq y \leq 2 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

$E[X]=\frac{2}{3}, E[Y]=0$.
Comments: (i) People who are not comfortable with 'absolute value', are welcome to treat separately the cases $y<0$ and $y>0$. Then $f_{Y}(y)$ would look like

$$
f_{Y}(y)=\left\{\begin{array}{ll}
\frac{2+y}{2} & \text { if }-2 \leq y \leq 0 \\
\frac{2-y}{2} & \text { if } 0 \leq y \leq 2 \\
0, & \text { otherwise }
\end{array} .\right.
$$

(ii) One can deduce that $E[Y]=0$ by symmetry, since the integrand at the bottom half is exactly the negative of the integrand at the top half of the region.
2. (4 points) Two friends decide to meet at a certain restaurant. If each of them independently arrives at a time uniformly distributed between 12 noon and $12: 30 \mathrm{pm}$. Find the probability that the first to arrive has to wait longer than 10 minutes.

Sol to 2: Since the friends arrive independently, and each is uniformly distributed (i.e. follows $U(0,30)$), the joint density function is

$$
f(x, y)=\left\{\begin{array}{l}
\frac{1}{900} \quad \text { if } \quad 0 \leq x, y \leq 30 \\
0, \text { otherwise }
\end{array} .\right.
$$

Let X be the arrival time of friend I and Y the arrival time of friend II. The probability that friend I would have to wait more than 10 minutes to friend II is

$$
P\{Y-X>10\}=\iint_{R} \frac{1}{900} d A
$$

where R is the region in the $x y$-plane

$$
\{(x, y) \mid 0 \leq x \leq 30,0 \leq y \leq 30, y-x \geq 10\} .
$$

In other words the part of the square $[0,30] \times[0,30]$ that is above and to the left of the line $y=x+10$. Drawing a little diagram shows that this region is a right-angled triangle with vertices

$$
(0,10) \quad, \quad(0,30) \quad, \quad(20,30)
$$

that has base-length 20 and height 20 . We know from fourth grade that the area of this triangle is $20 \cdot 20 / 2=200$. Multiplying by the constant integrand, $\frac{1}{900}$, we get that the probability that friend I would have to wait more than 10 minutes to friend II is $200 \cdot \frac{1}{900}=\frac{2}{9}$.

By symmetry, the probability that friend II would have to wait more than 10 minutes to friend I is also $\frac{2}{9}$, hence the probability that the first to arrive has to wait longer than 10 minutes is $2 \cdot \frac{2}{9}=\frac{4}{9}$.

Ans. to 2: The probability that the first to arrive has to wait longer than 10 minutes is $\frac{4}{9}$.

