Solutions to Math 477 REAL QUIZ \#6

1. (5 points) The number of years a radio functions is exponentially distributed with mean 10 years. If Jones buys a used radio, what is the probability that it will be working an additional 20 years?

Sol. to 1: The parameter is $\lambda=\frac{1}{10}$. For this problem it is better to use $\bar{F}(x)=P\{X \geq x\}$, the complementary cdf, whose formula is extremely simple

$$
\bar{F}(x)=e^{-\lambda x}
$$

Hence, the desired probability is

$$
P\{X \geq 20\}=e^{-\frac{1}{10} \cdot 20}=e^{-2}=0.13533528 \ldots .
$$

Ans. to 1: The probability that Jones' radio will be working an additional 20 years is $e^{-2}=$ 0.13533528....
2. (5 points) The working lifetime, in years, of a particular model of bread maker is normally distributed with mean 2 and standard deviation $\sqrt{2}$.

Calculate the 40-th percentile of the working lifetime, in years.
Sol. to 2:Let a be the 40-th percentile of the working life of the bread maker. We know that

$$
P\{X \leq a\}=0.4
$$

Rectall that

$$
Z=\frac{X-\mu}{\sigma}
$$

is a standard normal r.v., $N(0,1)$, for which the Z table is applicable.
In this problem $\mu=2$ and $\sigma=\sqrt{2}$. Subtracting $\mu=2$ from both sides of $X \leq a$, we get

$$
P\{X-2 \leq a-2\}=0.4
$$

Dividing by $\sigma=\sqrt{2}$ both sides of the inequailtiy $X-2 \leq a-2$, we get

$$
P\left\{\frac{X-2}{\sqrt{2}} \leq \frac{a-2}{\sqrt{2}}\right\}=0.4 .
$$

Hence

$$
\Phi\left(\frac{a-2}{\sqrt{2}}\right)=0.4 .
$$

From the Z-table, we get

$$
\Phi(-0.255)=0.4
$$

Hence

$$
\frac{a-2}{\sqrt{2}}=-0.255
$$

and hence

$$
a=2-0.255 \cdot \sqrt{2}=1.6393 \ldots .
$$

Ans. to 2: The probability that a random bread-maker would break down before the young age of $1.639375542 \ldots$ years is $\% 40$.

Comments:

1. You should always carry with you a copy of the table of Φ. Here it is http://sites.math.rutgers.edu/~zeilberg/math477/Ztable.pdf

But if for some reason you don't have it, you should write the answer as $2+\Phi^{-1}(0.4) \cdot \sqrt{2}$, where $\Phi(z)$ is the cdf of $N(0,1)$ that is famously given by the formula

$$
\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-x^{2} / 2} d x
$$

2. The table is not that accurate. A better table gives you

$$
\Phi^{-1}(0.4)=-0.2533475
$$

giving a more accurate answer of 1.641712530

