Solutions to Math 477 REAL QUIZ \#5

Version of Dec. 16, 2017 (Thanks to Mitchell Bregman)

1. (5 points) A coin whose probability of Heads is 0.6 is continually flipped until heads appears for the 5 -th time. Let X denote the number of tosses. Compute the probability mass function of X.

Sol. of 1: This calls for the negative binomial distribution with parameters $p=0.6$ and $r=5$. We have, in general

$$
P\{X=n\}=\binom{n-1}{r-1}(1-p)^{n-r} p^{r} \quad, \quad n=r, r+1, \ldots .
$$

Plugging-in $p=0.6$ and $r=5$, we get

$$
\begin{gathered}
P\{X=n\}=\binom{n-1}{4}(0.4)^{n-5} 0.6^{5}=\binom{n-1}{5}(0.4)^{n}(0.6 / 0.4)^{5} \\
\quad=\binom{n-1}{4}(0.4)^{n}(3 / 2)^{5}=\frac{243}{32}\binom{n-1}{4}(0.4)^{n} \quad n \geq 5, .
\end{gathered}
$$

Ans. to 1: The probability mass function of X is $P\{X=n\}=\frac{243}{32}\binom{n-1}{4}(0.4)^{n}$, for $n \geq 5$.
2. (5 points) A company agrees to accept the highest of two sealed bids on property. The two bids are regarded as two independent random variables with common density function

$$
f(x)=5 x^{4} \quad, \quad 0<x<1
$$

What is the expected value of the accepted bid?
Sol. to 2: We are given the pdf for an individual bid. We must first find the cdf, let's call it $F(x)$.

$$
F(x)=\int f(x) d x=\int 5 x^{4} d x=x^{5}+C
$$

where C is an arbitrary constant. But $F(0)=0$ so we get $0=0+C$ and hence $C=0$, and we know that the cdf of an individual bid if $F(x)=x^{5}$.

There are two sealed bids, let's call them X_{1}, X_{2}. We are interested in the random variable

$$
X:=\max \left(X_{1}, X_{2}\right)
$$

By logic, the event $X \leq x$ is the same as the event $X_{1} \leq x$ AND $X_{2} \leq x$, for any x. Hence

$$
P\{X \leq x\}=P\left(\left\{X_{1} \leq x\right\} \text { AND }\left(\left\{X_{2} \leq x\right\}\right) .\right.
$$

By independence

$$
P\{X \leq x\}=P\left(\{ X _ { 1 } \leq x \} \cdot P \left(\left\{X_{2} \leq x\right\}\right.\right.
$$

But, we know that $P\left(\left\{X_{1} \leq x\right\}=P\left(\left\{X_{2} \leq x\right\}=F(x)\right.\right.$, so

$$
P\{X \leq x\}=F(x)^{2}=\left(x^{5}\right)^{2}=x^{10}
$$

Hence the cdf of X is x^{10}, hence its pdf is $\left(x^{10}\right)^{\prime}=10 x^{9}$. Finally

$$
E[X]=\int_{0}^{1} x\left(10 x^{9}\right)=\int_{0}^{1} 10 x^{10}=\left.10 \frac{x^{11}}{11}\right|_{0} ^{1}=\frac{10}{11} \cdot\left(1^{11}-0^{11}\right)=\frac{10}{11} .
$$

Ans. to 2: The expected value of the accepted bid is $\frac{10}{11}$.

