Solutions to Math 477 REAL QUIZ \#4

1. (5 points) An actuary discovers that policyholders are four times as likely to file three claims as to file four claims. If the number of claims filed has a Poisson distribution, what is the second moment of the number of claims filed?

Sol. to 1: We are told that

$$
\frac{P\{X=3\}}{P\{X=4\}}=4
$$

Let λ be the parameter of the Poisson random variable. Since the probability mass function of a Poisson random variable is

$$
P\{X=k\}=e^{-\lambda} \frac{\lambda^{k}}{k!},
$$

we have

$$
\frac{e^{-\lambda \frac{\lambda^{3}}{3!}}}{e^{-\lambda \frac{\lambda^{4}}{4!}}}=4
$$

Simplifying (the $e^{-\lambda}$ cancels out).

$$
\frac{\frac{\lambda^{3}}{3!}}{\frac{\lambda^{4}}{4!}}=\frac{\frac{\lambda^{3}}{6}}{\frac{\lambda^{4}}{24}}=\frac{4}{\lambda} .
$$

Hence

$$
\frac{4}{\lambda}=4
$$

Giving $\lambda=1$. The second moment of a Poisson random variable is $\lambda(\lambda+1)$. Hence the second moment is $1 \cdot(1+1)=2$.

Ans. to 1: The second moment of the number of claims filed is 2 .
2. (5 points) A certain loaded die has $P(X=1)=0.5, P(X=2)=0.1, P(X=3)=0.1, P(X=$ $4)=0.1, P(X=5)=0.1, P(X=6)=0.1$. If you roll it 100 times, what is the expected number of times it lands on even integer? What is the standard-deviation?

Sol. to 2: The probability that it lends on an even integer in one throw is

$$
P\{X=2\}+P\{X=4\}+P\{X=6\}=0.1+0.1+0.1=0.3 .
$$

This is an example of a binomial random variable $B(n, p)$ with $n=100$ and $p=0.3$. Hence the expectation is $n p=100 \cdot 0.3=30$. The variance is $n p(1-p)=100 \cdot 0.3 \cdot 0.7=21$, hence the standard deviation is $\sigma=\sqrt{21}=4.582575695 \cdots$.

Ans. to 2: The expected number of times it lands on an even integer is 30, the standard deviation is $\sqrt{21}=4.582575695 \cdots$.

