Solutions to Math 477 REAL QUIZ \#3

1. (3 points) Let X be the winnings of a gambler and assume that

$$
\begin{gathered}
P\{X=1\}=0.1 \quad ; \quad P\{X=2\}=0.4 ; \\
P\{X=-1\}=0.3 \quad ; \quad P(X=-2)=0.2 ;
\end{gathered}
$$

(i) Compute the conditional probability that gambler wins i, for $i=1,2$, given that he wins a positive amount. (ii) Find $E[X]$, his expected winning.

Sol. to 1(i): For future reference, let's compute first $P\{X>0\}$

$$
P\{X>0\}=P\{X=1\}+P\{X=2\}=0.1+0.4=0.5 .
$$

Now we have

$$
\begin{aligned}
& P\{X=1 \mid X>0\}=\frac{P\{X=1\}}{P\{X>0\}}=\frac{0.1}{0.5}=0.2, \\
& P\{X=2 \mid X>0\}=\frac{P\{X=2\}}{P\{X>0\}}=\frac{0.4}{0.5}=0.8 .
\end{aligned}
$$

Ans. to 1(i): 0.2, 0.8.
Sol. to 1(ii):

$$
\begin{gathered}
E[X]=P\{X=1\} \cdot 1+P\{X=2\} \cdot 2+P\{X=-1\} \cdot(-1)+P\{X=-2\} \cdot(-2) \\
(0.1) \cdot 1+(0.4) \cdot 2+(0.3) \cdot(-1)+(0.2) \cdot(-2)=0.1+0.8-0.3-0.4=0.2
\end{gathered}
$$

Ans. to 1(ii): $E[X]=0.2$.
2. (4 points) The number of injury claims per month is modeled by a random variable N with

$$
P\{N=n\}=\frac{4}{(n+1)(n+2)(n+3)}, \quad \text { where } \quad n \geq 0 .
$$

Determine the probability of at least one claim during a particular month, given that there have been at most two claims during that month.

Sol. to 2:

$$
P(N \leq 1 \mid N \leq 2)=\frac{P\{1 \leq N \leq 2\}}{P\{0 \leq N \leq 2\}}=\frac{P\{N=1\}+P\{N=2\}}{P\{N=0\}+P\{N=1\}+P\{N=2\}} .
$$

Now

$$
P\{N=0\}=\frac{4}{(0+1)(0+2)(0+3)}=\frac{2}{3}
$$

$$
\begin{gathered}
P\{N=1\}=\frac{4}{(1+1)(1+2)(1+3)}=\frac{1}{6}, \\
P\{N=2\}=\frac{4}{(2+1)(2+2)(2+3)}=\frac{1}{15} .
\end{gathered}
$$

Hence

$$
P(N \leq 1 \mid N \leq 2)=\frac{1 / 6+1 / 15}{2 / 3+1 / 6+1 / 15}=\frac{7}{27} .
$$

Ans. to 2: The probability of at least one claim during a particular month, given that there have been at most two claims during that month is $\frac{7}{27}$.
3. (3 points) An n-faced fair die, marked with $1,2, \ldots n$ is rolled. What are the Expected number of the cube of the number of dots of landed face?

Sol. to 3: We need

$$
\frac{1}{n}\left(\sum_{i=1}^{n} i^{3}\right)
$$

By a famous and beautiful formula

$$
\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}=\frac{n^{2}(n+1)^{2}}{4}
$$

Hence
Ans. to 3: $\frac{n(n+1)^{2}}{4}$

