Solutions to Math 477 "QUIZ" for Lecture 6

Version of Sept. 27, 2017: Thanks to Judah Axelrod (who won a dollar) [correcting the error in the last line of 1 (iii), and hence changing the final answer of 1 (iii) from the erroneous one to the correct one]

1. The probability mass function of random variable X is given by $c / 3^{i}, i=0,1,2, \ldots$, where c is some positive value. Find (i) $P\{X=0\}$, (ii) $P\{X<3\}$, (iii) $P\{X>5\}$.

Sol. of 1: First we must find c. Since all the probabilities must add-up to one, we must have

$$
\sum_{i=0}^{\infty} P\{X=i\}=1
$$

On the other hand, we are told that $P\{X=i\}=\frac{c}{3^{i}}$. Hence

$$
\sum_{i=0}^{\infty} \frac{c}{3^{i}}=1
$$

Sticking c out, we get,

$$
c \sum_{i=0}^{\infty} \frac{1}{3^{i}}=1
$$

Recall the famous (and very important!) fact from calc1,

$$
\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} \quad|x|<1
$$

Here $x=\frac{1}{3}$, so

$$
\sum_{i=0}^{\infty} \frac{1}{3^{i}}=\frac{1}{1-\frac{1}{3}}=\frac{1}{\frac{2}{3}}=\frac{3}{2}
$$

so $c \frac{3}{2}=1$ implying that $c=\frac{2}{3}$. We now know that

$$
P\{X=i\}=\frac{2}{3} \cdot\left(\frac{1}{3}\right)^{i}
$$

Now we know the exact formula for $P\{X=i\}$ we can answer the questions.
(i)

$$
P\{X=0\}=\frac{2}{3}\left(\frac{1}{3}\right)^{0}=\frac{2}{3} .
$$

(ii)

$$
P\{X<3\}=P(X=0)+P(X=1)+P(X=2)=\frac{2}{3}\left(\frac{1}{3}\right)^{0}+\frac{2}{3}\left(\frac{1}{3}\right)^{1}+\frac{2}{3}\left(\frac{1}{3}\right)^{2}
$$

$$
=\frac{2}{3}\left(\left(\frac{1}{3}\right)^{0}+\left(\frac{1}{3}\right)^{1}+\left(\frac{1}{3}\right)^{2}\right)=\frac{2}{3}\left(1+\frac{1}{3}+\frac{1}{9}\right)=\frac{2}{3} \cdot \frac{9+3+1}{9}=\frac{26}{27} .
$$

(iii)

$$
\begin{gathered}
P\{X>5\}=\frac{2}{3} \sum_{i=6}^{\infty} \frac{1}{3^{i}}=\frac{2}{3} \cdot\left(\frac{1}{3^{6}}+\frac{1}{3^{7}}+\frac{1}{3^{8}}+\ldots\right) \\
=\frac{2}{3} \cdot \frac{1}{3^{6}}\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots\right)=\frac{2}{3} \cdot \frac{1}{3^{6}} \frac{1}{1-\frac{1}{3}}=\frac{2}{3} \cdot \frac{1}{3^{6}} \cdot \frac{3}{2}=\frac{1}{3^{6}}=\frac{1}{729} .
\end{gathered}
$$

Ans. to 1: (i) $\frac{2}{3}$, (ii) $\frac{26}{27}$, (iii) $\frac{1}{729}$.
2. Let X be the winnings of a gambler and assume that

$$
P\{X=-2\}=0.15 \quad, \quad P\{X=-1\}=0.3 \quad, \quad P\{X=1\}=0.35 \quad, \quad P\{X=2\}=0.2
$$

(a) Compute the conditional probability that gambler wins i, for $i=1,2$, given that he wins a positive amount.
(b) Find $E[X]$, his expected winning.

Sol. to 2(a): First let's compute $P\{X>0\}$.

$$
P\{X>0\}=P\{X=1\}+P\{X=2\}=0.35+0.2=0.55 .
$$

Hence

$$
P(X=1 \mid X>0)=\frac{P\{X=1\}}{P\{X>0\}}=\frac{0.35}{0.55}=\frac{7}{11} \quad, \quad P(X=2 \mid X>0)=\frac{P\{X=2\}}{P\{X>0\}}=\frac{0.2}{0.55}=\frac{4}{11} .
$$

Sol. to 2(b):

$$
\begin{aligned}
E[X]=(-2) & \cdot P\{X=-2\}+(-1) \cdot P\{X=-1\}+(1) \cdot P\{X=1\}+(2) \cdot P\{X=2\} \\
& =(-2) \cdot 0.15+(-1) \cdot 0.3+(1) \cdot 0.35+(2) \cdot 0.2=0.15 .
\end{aligned}
$$

Ans. to 2(b): The expected winning of the gambler, $E[X]$, equals 0.15 .

