Solutions to Math 477 "QUIZ" for Lecture 5

1. A loaded coin, whose probability of Heads is 0.6 is tossed 20 times. Assuming that the tosses are independent, what is the probability that
(i) it landed Heads all the time ?
(ii) it landed Heads 15 times and Tails 5 times?

Ans. to 1 (i) 0.6^{20} (ii) $\binom{20}{15}(0.6)^{15}(0.4)^{5}$.
Problem 2. Two soccer teams, A, and B compete. The probability that team A scores a goal is $\frac{3}{4}$. The team who scores any given goal is independent of who scored any other goal.

Calculate the probability that team B scored 3 goals before team A 's $2^{\text {nd }}$ goal.
Sol. to 2. This is an instance of the problem of the points.
If Independent trials resulting in success with probability p and failure with probability $1-p$ are performed, then the probability that n successes occur before m failures is

$$
\sum_{k=n}^{m+n-1}\binom{m+n-1}{k} p^{k}(1-p)^{m+n-1-k}
$$

From the perspective of team B, $p=\frac{1}{4}, n=3$ and $m=2$, we have

$$
\begin{gathered}
\sum_{k=3}^{2+3-1}\binom{2+3-1}{k}\left(\frac{1}{4}\right)^{k}\left(\frac{3}{4}\right)^{2+3-1-k} \\
=\sum_{k=3}^{4}\binom{4}{k}\left(\frac{1}{4}\right)^{k}\left(\frac{3}{4}\right)^{4-k} \\
=\binom{4}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{4-3}+\binom{4}{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{4-4} \\
4 \cdot\left(\frac{1}{4}\right)^{3} \frac{3}{4}+1 \cdot\left(\frac{1}{4}\right)^{4}=\frac{13}{256} .
\end{gathered}
$$

Ans. to 2: The probability that team B scored 3 goals before team A 's $2^{\text {nd }}$ goal is $\frac{13}{256}$.

