Solutions to Math 477 "QUIZ" for Lecture 22

1. State and Prove Markov's inequality

Sol. of 1: If X is a random variable that takes only non-negative values, then for any $a>0$:

$$
P\{X \geq a\} \leq \frac{E[X]}{a}
$$

Proof: For $a>0$, let

$$
I= \begin{cases}1, & \text { if } X \geq a \\ 0 & ,\end{cases}
$$

Obviously (since $X \geq 0$)

$$
I \leq \frac{X}{a}
$$

(When $X<a$ the left side is 0 and the right side is non-negative, when $X \geq a$ the left side is 1 and the right side is ≥ 1 (and usually, >1). Taking expectation, we have

$$
E[I] \leq E\left[\frac{X}{a}\right]=\frac{E[X]}{a}
$$

But $E[I]=0 \cdot P[X<a]+1 \cdot P[X \geq a]=P[X \geq a]$, so the inequality follows.
2. State Chebychev's inequality.

Sol. of 2: If X is random variable with mean μ and variance σ^{2}, then for any value $k>0$,

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}} .
$$

