Solutions to Math 477 "QUIZ" for Lecture 21

Version of Dec. 17, 2017 (Thanks to Mitchell Bregman)

1. The value of a piece of factory equipment after two years of use is $10(0.2)^{X}$, where X is a random variable having moment generating function

$$
M_{X}(t)=\frac{1}{1-3 t} \quad, \quad \text { for } \quad t<\frac{1}{3}
$$

Calculate the expected value of this piece of equipment after two years of use.
Sol. to 1:
$E\left[10(0.2)^{X}\right]=10 E\left[(0.2)^{X}\right]=10 E\left[e^{(\ln 0.2) X}=10 M_{X}(\ln 0.2)=10 \cdot \frac{1}{1-3(\ln 0.2)}=1.715762132 \ldots\right.$.

Ans. to 1: The expected value of this piece of equipment after two years of use is $1.715762132 \ldots$
2. X and Y are independent random variables with common moment generating function $M(t)=$ $e^{t^{4}}$.

Let $W=2 X+Y$ and $Z=Y-X$.
Determine the joint moment generating function, $M\left(t_{1}, t_{2}\right)$ of W and Z.
Sol. to 2:

$$
\begin{gathered}
M_{W, Z}\left(t_{1}, t_{2}\right)=E\left[e^{t_{1} W+t_{2} Z}\right]=E\left[e^{t_{1}(2 X+Y)+t_{2}(Y-X)}\right]=E\left[e^{\left.\left(2 t_{1}-t_{2}\right) X+\left(t_{1}+t_{2}\right) Y\right)}\right]= \\
=M_{X}\left(2 t_{1}-t_{2}\right) M_{Y}\left(t_{1}+t_{2}\right)=e^{\left(2 t_{1}-t_{2}\right)^{4}} e^{\left(t_{1}+t_{2}\right)^{4}}=e^{\left(2 t_{1}-t_{2}\right)^{4}+\left(t_{1}+t_{2}\right)^{4}} .
\end{gathered}
$$

