Solutions to Math 477 "QUIZ" for Lecture 20

1. Suppose that the joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x+y}{15} & , \quad \text { if } 0<x<2,0<y<3 \\
0
\end{array}, \quad \text { otherwise } .\right.
$$

Find
(a) $E[X \mid Y=y]$
(b) $E[Y \mid X=x]$

Sol. to $\mathbf{1}(\mathbf{a})$: For the sake of convenience, we can ignore the constant $\frac{1}{15}$, since it would cancel out

$$
E[X \mid Y=y]=\frac{\int_{0}^{2} x(x+y) d x}{\int_{0}^{2}(x+y) d x}
$$

The top is

$$
\int_{0}^{2} x(x+y) d x=\int_{0}^{2}\left(x^{2}+x y\right) d x=\left.\left(\frac{x^{3}}{3}+y \frac{x^{2}}{2}\right)\right|_{0} ^{2}=\frac{2^{3}-0^{3}}{3}+y \frac{\left(2^{2}-0^{2}\right)}{2}=\frac{8}{3}+2 y
$$

The bottom is

$$
\int_{0}^{2}(x+y) d x=\left.\left(\frac{x^{2}}{2}+y x\right)\right|_{0} ^{2}=\left(\frac{2^{2}-0^{2}}{2}+y(2-0)\right)=2+2 y
$$

Hence

$$
E[X \mid Y=y]=\frac{\frac{8}{3}+2 y}{2+2 y}=\frac{3 y+4}{3(y+1)}
$$

Ans. to 1(a): $E[X \mid Y=y]=\frac{3 y+4}{3(y+1)}$.
Sol. to $\mathbf{1 (b)}$: For the sake of convenience, we can ignore teh constant $\frac{1}{15}$, since it would cancel out

$$
E[Y \mid X=x]=\frac{\int_{0}^{3} y(x+y) d y}{\int_{0}^{3}(x+y) d y}
$$

The top is

$$
\int_{0}^{3} y(y+x) d y=\int_{0}^{3}\left(y^{2}+x y\right) d y=\left.\left(\frac{y^{3}}{3}+x \frac{y^{2}}{2}\right)\right|_{0} ^{3}=\frac{3^{3}-0^{3}}{3}+x \frac{\left(3^{2}-0^{2}\right)}{2}=9+\frac{9}{2} x
$$

The bottom is

$$
\int_{0}^{3}(y+x) d y=\left.\left(\frac{y^{2}}{2}+x y\right)\right|_{0} ^{3}=\frac{3^{2}-0^{2}}{2}+x(3-0)=\frac{9}{2}+3 x
$$

Hence

$$
E[Y \mid X=x]=\frac{9+\frac{9}{2} x}{\frac{9}{2}+3 x}=\frac{3(x+2)}{2 x+3} .
$$

Ans. to 1(b): $E[Y \mid X=x]=\frac{3(x+2)}{2 x+3} \quad$.
2. A miner is trapped in a mine containing 2 doors.

- The first door leads to a tunnel that will take him to safety after 2 hours of travel.
- The second door leads to a tunnel that will take him back to the mine in 4 hours of travel.

If the probabilities of him choosing the first door is $\frac{1}{3}$, and of him choosing the second door is $\frac{2}{3}$, what is the expected length of time until he reaches safety?

Sol. to 2 : Let T be the expected time to safety. Then,

$$
T=\frac{1}{3} \cdot 2+\frac{2}{3} \cdot(T+4) .
$$

since with prob. $\frac{1}{3}$ he would immediately go to safety (that takes 2 hours), and with prob. $\frac{2}{3}$ he would be back where he started, alas, having wasted 4 hours, so he still expects to have T hours, totalling $T+4$ hours for that secenario.

Simplifying

$$
\begin{gathered}
T=\frac{2}{3}+\frac{2}{3} T+\frac{8}{3} . \\
\frac{T}{3}=\frac{10}{3} .
\end{gathered}
$$

Giving $T=10$.
Ans. to 2: The expected length of time until he reaches safety is ten hours.

