Solution to Dr. Z.'s Math 477 "QUIZ" for Lecture 1

1. A class has 10 boys and 6 girls. You have to pick a committee of 5 boys and 3 girls. In how many ways can you do it?

Sol. to 1.: We have to make two independent decisions.

- The number of ways of choosing 5 boys out 10 is $\binom{10}{5}$
- The number of ways of choosing 3 girls out 6 is $\binom{6}{3}$.

The total number of such committees is the number of elements in their Cartesian product, i.e. obtained by multiplying them. Hence it is

Ans. to 1.: $\binom{10}{5}\binom{6}{3}$. Note: If you want the actual number, we have

$$
\begin{gathered}
\binom{10}{5}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5!}=252 . \\
\binom{6}{3}=\frac{6 \cdot 5 \cdot 4}{3!}=20
\end{gathered}
$$

This evaluates to $252 \cdot 20=5040$ (but you would get full credit without evaluating it, unless I specifically ask for it).
2. In how many ways can you roll a pair of dice so that the sum of the dots is neither 3 nor 5 .

Sol. of 2. It is easier to find the number of pairs that sum up to 3 and the number of pairs that sum up to 5 (obviously there is no overlap, you can't add-up to 3 and add-up to 5).

Adding up to 3 : $\{[1,2],[2,1]\}$.
Adding up to $5:\{[1,4],[2,3],[3,2],[4,1]\}$.
So the number of pairs that ad up to 3 or add-up to 5 is $2+4=6$. Hene the number of pairs that neither add-up to 3 nor add-up to 5 is $6^{2}-6=36-6=30$.

Ans. to 2.: The number of ways that you can roll a pair of dice so that the sum of the dots is neither 3 nor 5 is 30 .

