Solutions to Math 477 "QUIZ" for Lecture 18

1. You go to a strange casino where you have a chance of 0.01 to win 100 dollar, a chance of 0.02 to win 50 dollars, and 0.97 chance to lose a dollar. You do it for n days, and each time is independent of the other times. If X is the random variable denoting your total gain, what is the probability generating function? What is $E[X]$? What is $\operatorname{Var}(X)$?

Sol. to 1 : The probability generating function for one day is

$$
0.01 x^{100}+0.02 x^{50}+0.97 x^{-1}
$$

By independence the probability generating function for the r.v. "total gain" is

$$
P(x)=\left(0.01 x^{100}+0.02 x^{50}+0.97 x^{-1}\right)^{n}
$$

Now for $E[X]$
First way: Using the fact that $E[X]=P^{\prime}(1)$.
$P^{\prime}(x)=n\left(0.01 x^{100}+0.02 x^{50}+0.97 x^{-1}\right)^{n-1} \cdot\left(0.01(100) x^{99}+0.02(50) x^{49}+0.97(-1) x^{-2}\right)$.
Hence

$$
\begin{aligned}
P^{\prime}(1)=n \cdot(1) \cdot & \left(0.01(100) 1^{99}+0.02(50) 1^{49}+0.97(-1) 1^{-2}\right) \\
= & n(1+1-0.97)=1.03 \cdot n
\end{aligned}
$$

Second Way: Use Linearity of expectation.
The expected gain of one day's winning is $0.01 \cdot 100+0.02 \cdot 50+(0.97)(-1)=1.03$. Each day has the same expectation, and hence the total expected gain is 1.03 added n times yielding $1.03 n$.

Note: For $E[X]$ we did not need the fact that each day is independent of other days.
Now for $\operatorname{Var}(X)$.
First way: Find $\left(x \frac{d}{d x}\right)^{2}\left(\left(0.01 x^{100}+0.02 x^{50}+0.97 x^{-1}\right) / x^{1.03}\right)^{n}$ and then plug-in $x=1$. (You do it!)

Second Way Using the linearity of the variance for a sum of independent random variables.
Let X_{i} be the r.v. of the i-th day's gain.

$$
E\left[X_{i}^{2}\right]=0.01 \cdot 100^{2}+0.02 \cdot 50^{2}+(0.97)(-1)^{2}=150.97
$$

Hence

$$
\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=150.97-1.03^{2}=149.9091
$$

Hence $\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)=n \cdot 149.9091$.
Ans. to 1: The prob. generating function for the total gain is $\left(0.01 x^{100}+0.02 x^{50}+0.97 x^{-1}\right)^{n}$, the expectation of X is $1.03 n$ and the variance of X is $149.9091 n$.
2. If you enter a casino with 100 dollars, and wish to make 200 dollars, and the probability, at each round, of winning a dollar is 0.5 and losing a dollar is 0.5 , what is the probability of exiting a loser? How long would you expect to stay in the casino?

Sol. to 2: Since this is a fair casino (that unfortunately, does not exist in the real world), the probabibilty of winning is $\frac{100}{200}=\frac{1}{2}$, and hence of losing is $1-\frac{1}{2}=\frac{1}{2}$, and the expected duration of staying in the casino (until you either make 200 dolalrs or get broke) is $100 \cdot(200-100)=$ $100 \cdot 100=10000$ rounds.

Ans. to 2: The probability of exiting a loser is $\frac{1}{2}$. amd the expected duration until you get out is 10000 rounds.

