Solutions to Math 477 "QUIZ" for Lecture 16

1. In a certain (not that wealthy) town, the probability that a household has i cars and j bed-rooms is

$$
p(i, j)= \begin{cases}\frac{i+j}{16}, \quad \text { if } 0 \leq i \leq 1 \quad \text { and } \quad 0 \leq j \leq 3 \\ 0, & \text { otherwise. }\end{cases}
$$

If it is known that a household has 2 bed-rooms, what is the probability that it has a car?
Sol. to 1: The probability that it has 2 bed-rooms is

$$
P(\text { TwoBedRooms })=p(0,2)+p(1,2)=\frac{0+2}{16}+\frac{1+2}{16}=\frac{5}{16}
$$

The probability that it has two bedroos and one car is $p(1,2)=\frac{1+2}{16}=\frac{3}{16}$.
Hence the conditional probability, $P($ OneCar \mid TwoBedRooms $)$,

$$
P(\text { OneCar } \mid \text { TwoBedRooms })=\frac{P(\text { OneCar AND TwoBedRooms })}{P(\text { TwoBedRooms })}=\frac{\frac{3}{16}}{\frac{5}{16}}=\frac{3}{5} .
$$

Ans. to 1: The probability that a family has a car if it is known that it has two bed-rooms is $\frac{3}{5}$.
2. The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
\frac{2(x+2 y)}{3}, \text { if } 0<x<1,0<y<1 ; \\
0, \text { otherwise, }
\end{array}\right.
$$

(i) Compute the conditional density of X given that $Y=y$. (ii) If you know that $Y=0.5$ what is the probability that $0 \leq X \leq 0.5$.

Sol. to 2(i): We first need to find the marginal density function $f_{Y}(y)$.

$$
\begin{gathered}
f_{Y}(y)=\int_{0}^{1} f(x, y) d x=\int_{0}^{1} f(x, y) d x=\int_{0}^{1} \frac{2(x+2 y)}{3} d x \\
=\left.\frac{2}{3}\left(\frac{x^{2}}{2}+2 y x\right)\right|_{0} ^{1}=\left.\frac{2}{3}\left(\frac{x^{2}}{2}+2 y x\right)\right|_{0} ^{1}=\frac{2}{3}\left(\frac{1}{2}+2 y(1)\right)=\frac{1+4 y}{3} .
\end{gathered}
$$

Hence the conditional density of X given that $Y=y$, denoted by $f_{X \mid Y}(x \mid y)$, that by definition is $f(x, y) / f_{Y}(y)$, is given by

$$
\frac{\frac{2}{3}(x+2 y)}{\frac{1+4 y}{3}}=\frac{2(x+2 y)}{1+4 y}
$$

Ans. to 2(i): The conditional density of X given that $Y=y$ is $\frac{2(x+2 y)}{1+4 y}$.

Sol. to 2(ii): Plugging-in $y=0.5$ into $f_{X \mid Y}(x \mid y)=\frac{2(x+2 y)}{1+4 y}$, we get

$$
f_{X \mid Y}(x \mid 0.5)=\frac{2(x+2 \cdot 0.5)}{1+4 \cdot 0.5}=\frac{2(x+1)}{3}=\frac{2}{3}(x+1) .
$$

$P\left(\left.0 \leq X \leq \frac{1}{2} \right\rvert\, Y=\frac{1}{2}\right)=\int_{0}^{0.5} \frac{2}{3}(x+1) d x=\left.\frac{2}{3}\left(\frac{x^{2}}{2}+x\right)\right|_{0} ^{\frac{1}{2}}=\frac{2}{3}\left(\frac{\left(\frac{1}{2}\right)^{2}-0^{2}}{2}+\left(\frac{1}{2}-0\right)\right)=\frac{2}{3}\left(\frac{5}{8}\right)=\frac{5}{12}$.

Ans. to 2(ii): The probability that $0 \leq X \leq 0.5$. if you know that $Y=0.5$, is $\frac{5}{12}$.

