Solutions to Math 477 "QUIZ" for Lecture 11

1. The density function of a continuous random variable, X, is given by

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}}{72} \quad \text { if } \quad 0 \leq x \leq 6 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

(i) What is the probability that X is between 0 and 4 ?
(ii) What is the probability that X is between 0 and 2 , if it is known that it is between 0 and 4 .

Sol. of $1(\mathrm{i})$:

$$
P\{0<X<4\}=\int_{0}^{4} \frac{x^{2}}{72} d x==\left.\frac{1}{72} \frac{x^{3}}{3}\right|_{0} ^{4}=\frac{4^{3}-0^{3}}{3 \cdot 72}=\frac{64}{3 \cdot 72}=\frac{8}{3 \cdot 9}=\frac{8}{27} .
$$

Ans. to $\mathbf{1}(\mathbf{i})$: the probability that X is between 0 and 4 is $\frac{8}{27}$.
Sol. of 1(ii): Using $P(E \mid F)=P(E F) / P(F)$ where E is the event $\{0<X<2\}$ and F is the event $\{0<X<4\}$, and since $E F=E(E$ is a subset of $F)$

$$
P(0<X<2 \mid 0<X<4)=\frac{P\{0<X<2\}}{P\{0<X<4\}} .
$$

We already know the denominator (see above). As for the numerator:

$$
P\{0<X<2\}=\int_{0}^{2} \frac{x^{2}}{72} d x=\left.\frac{1}{72} \frac{x^{3}}{3}\right|_{0} ^{2}=\frac{2^{3}-0^{3}}{3 \cdot 72}=\frac{8}{3 \cdot 72}=\frac{1}{3 \cdot 9}=\frac{1}{27} .
$$

So

$$
P(0<X<2 \mid 0<X<4)=\frac{\frac{1}{27}}{\frac{8}{27}}=\frac{1}{8}
$$

Ans. to 1(ii): The probability that X is between 0 and 2 , if it is known that it is between 0 and 4 is $\frac{1}{8}$.
2. The lifetime of a machine part has continuous distribution on the interval $(0,10)$, with probability density function f, where $f(x)$ is proportional to $\frac{1}{1+x}$. What is the probability that the lifetime of the machine part is less than 4 ?

Sol. of 2: We first need to find the exact expression for the probability density function $f(x)$. We are told that

$$
f(x)=\left\{\begin{array}{l}
\frac{c}{1+x} \text { if } 0 \leq x \leq 10 \\
0 \text { otherwise }
\end{array}\right.
$$

for some constant c to be determined. Since, always,

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Since $f(x)$ is only non-zero in the interval $(0,10)$, we have

$$
\int_{0}^{10} \frac{c}{1+x} d x=1
$$

So

$$
c \int_{0}^{10} \frac{1}{1+x} d x=1
$$

hence

$$
c\left(\left.\ln (1+x)\right|_{0} ^{10}\right)=c(\ln (11)-\ln (1))=c(\ln 11)=1 .
$$

We get $c=1 /(\ln 11)$. Hence

$$
\begin{gathered}
\left.P\{0<X<4\}=\int_{0}^{4} f(x) d x=\frac{1}{\ln 11} \int_{0}^{4} \frac{1}{1+x}=\left.\frac{1}{\ln 11}(\ln (1+x))\right|_{0} ^{4}\right) \\
=\frac{1}{\ln 11}(\ln 5-\ln 1)=\frac{1}{\ln 11}(\ln 5-0)=\frac{\ln 5}{\ln 11} .
\end{gathered}
$$

Ans. to 2: The probability that the lifetime of the machine part is less than 4 is $\frac{\ln 5}{\ln 11}=$ $0.6711877412 \ldots$.

