Dr. Z.'s Intro to Probability Homework assignment 20

1. In a certain community the maximum number of boys is 3 and the maximum number of girls is 3.

It is found that the probability density function
$p(i, j)=\operatorname{Pr}($ NumberOfBoys $=i$, NumberOfGirls $=j)=\frac{c}{1+i+j} \quad, \quad 0 \leq i \leq 3 \quad, \quad 0 \leq j \leq 3$.
(a) Find the expected number of girls in families with i boys for $i=0,1,2,3$.
(b) Find the expected number of boys in families with j girls for $j=0,1,2,3$.
(c) Find the expected number of girls if it is known that there are at least as many girls as boys .
(d) Find the expected number of boys if it is known that there are at least as many girls as boys .

Leave your answers as Maple commands. If you have Maple, please compute them.
2. Suppose that the joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
x+y \quad, \quad \text { if } 0<x<1,0<y<1 ; \\
0, \quad \text { otherwise } .
\end{array} .\right.
$$

Find
(a) $E[X \mid Y=y]$
(b) $E[Y \mid X=x]$
3. Suppose that the joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
\frac{12\left(x^{2}+y\right)}{5}, \quad \text { if } 0<y<x<1 ; \\
0, \quad \text { otherwise } .
\end{array}\right.
$$

Find (a) $E[X \mid Y=y] \quad ; \quad$ (b) $E[Y \mid X=x]$.
Leave your answers as Maple commands. If you have Maple, please compute them.
4. Suppose that the joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
\frac{12\left(x^{2}+y\right)}{5}, \text { if } 0<y<x<1 \\
0, \text { otherwise } .
\end{array}\right.
$$

Find (a) $E[X \mid X+Y<1] \quad ; \quad$ (b) $E[Y \mid X+Y<1]$.

Leave your answers as Maple commands. If you have Maple, please compute them.
5. Two life insurance policies, each with a death benefit of 10,000 and a one-time premium of 500 , are sold to a couple, one for each person. The policies will expire at the end of the tenth year. The probability that only the wife will survive at least ten years is 0.025 , the probability that only the husband will survive at least ten years is 0.01 , and the probability that both of them will survive at least ten years is 0.96 ,

What is the expected excess of premiums over claims, given that the husband survives at least ten years?
6. A miner is trapped in a mine containing 4 doors.

- The first door leads to a tunnel that will take him to safety after 2 hours of travel.
- The second door leads to a tunnel that will take him back to the mine in 3 hours of travel.
- The third door leads to a tunnel that will take him back to the mine in 4 hours of travel.
- The fourth door leads to a tunnel that will take him back to safety in 5 hours of travel.

If the probabilities of him choosing the first, second, third, and fourth doors are $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}$, and $\frac{1}{8}$ respectively, what is the expected length of time until he reaches safety?

