Dr. Z.'s Intro to Probability Homework assignment 19

1. Suppose that

- Alice is 160 cm -tall, has an $I Q 120$ and weighs 50 kgs ;
- Barbara is 170 cm -tall, has an $I Q 130$ and weighs 60 kgs ;
- Courtney is 155 cm -tall, has an $I Q 115$ and weighs 55 kgs .

Assuming that each girl is equally likely to be picked, find the correlation between height and weight, height and IQ, and weight and IQ.
2. In a certain family of three girls, the scores (out of 100) for English and Math are as follows

Alice: English 100 ; Math: 60
Barbara: English 90 ; Math: 70
Courtney: English 80 ; Math: 80
What is The correlation between the English scores and the Math scores?
3. In the sample space $\{1,2,3\}$, with $\operatorname{Pr}(i)=\frac{1}{3}$, define the random variables $X(i)=i, Y(i)=4-i$.
(a) Find $E[X]$ and $E[Y]$.
(b) Find $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.
(c) Find the covariance $\operatorname{Cov}(X, Y)$ and the correlation $\rho(X, Y)$.
4. If $\operatorname{Var}(X)=100, \operatorname{Var}(Y)=200$, and $\operatorname{Var}(X+Y)=400$, find
(i) $\operatorname{Var}(2 X+3 Y)$;
(ii) $\operatorname{Var}(X-Y)$.
5. Suppose that $\operatorname{Var}(X)=1, \operatorname{Var}(Y)=2, \operatorname{Var}(Z)=3, \operatorname{Var}(X+Y)=4, \operatorname{Var}(X+Z)=$ $5, \operatorname{Var}(Y+Z)=6$. Find
(i) $\operatorname{Var}(X+Y+Z)$;
(ii) $\operatorname{Var}(2 X-Y+Z)$.
6. An insurance policy pays a total medical benefit consisting if two parts for each claim. Let X represent the part of the benefit that is paid to the surgeon, and let Y represent the part that is paid to the hospital. The variances of X is 5000 , the variance of Y is 10,000 , and the variance of the total, $X+Y$, is 17,000 .

Due to increasing medical costs the company that issues the policy decides to increase X by a finite amount of 100 per claim, and to increase Y by 10% per claim.

Calculate the variance of the total benefit after these revisions are made.
7. Let X and Y be the number of hours that a randomly selected person watches movies and sports events, respectively, during a three-month period. The following information is known about X and Y.

$$
E[X]=50 \quad, \quad E[Y]=20 \quad, \quad \operatorname{Var}(X)=50 \quad, \quad \operatorname{Var}(Y)=30 \quad, \quad \operatorname{Cov}(X, Y)=10 .
$$

One hundred people are randomly selected and observed for these three months. Let T be the total number of hours that these one hundred people watch movies or sports events this three month period.

Approximate the value of $P(T<7100)$.

