Dr. Z.'s Intro to Probability Homework assignment 16

Version of Nov. 13, 2017: Please discard previous versions (if they exist).

1. In a certain community, the probability that a family has i boys and j girls is given by

$$
p(i, j)=\left\{\begin{array}{l}
\frac{c}{(i+j+1)^{2}}, \quad \text { if } 0 \leq i \leq 2 \quad \text { and } \quad 0 \leq j \leq 3 \\
0, \quad \text { otherwise. }
\end{array}\right.
$$

for some positive constant c (that would make it a discrete probability mass function). Calculate the conditional probability mass function for the number of boys in families that have exactly 2 girls.
2. In a certain (mostly) wealthy town, the probability that a household has i cars and j bed-rooms is

$$
p(i, j)=\left\{\begin{array}{l}
\frac{2 i+3 j}{744} \quad \text { if } 0 \leq i \leq 5 \quad \text { and } \quad 0 \leq j \leq 7 \\
0^{,}, \quad \text { otherwise. }
\end{array}\right.
$$

If it is known that a household has 5 bed-rooms, what is the probability that it has at least two cars?
3. The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
x+y \quad, \quad \text { if } 0<x<1,0<y<1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

(i) Compute the conditional density of X given that $Y=y$. (ii) If you know that $Y=0.6$ what is the probability that $0.4 \leq X \leq 0.7$.
4. The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
3 x+3 y, \quad \text { if } 0<x, 0<y, \text { and } x+y<1 ; \\
0, \quad \text { otherwise } .
\end{array}\right.
$$

(i) Compute the conditional density of X given that $Y=y$ and the conditional density of Y given that $X=x$.
(ii) If it is known that $Y=\frac{1}{4}$, what is the probability that $X \leq \frac{1}{2}$?
5. A company offers a basic life insurance policy to its employees, as well as a supplemental life insurance policy. To purchase the supplemental policy, an employee must first purchase the basic policy.

Let X denote the proportion of employees who purchase the basic policy, and let Y the proportion of the employees who purchase the supplemental policy. Let X and Y have joint density function $f(x, y)=2(x+y)$ on the region where the density is positive.

Given that 10% of the employees buy the basic policy, determine the probability that fewer than 5% buy the supplemental policy.
6. In a certain community of married couples, the maximal income of the wife is 300 K and the maximal income of the husband is 100K. Every husband makes at most a third of his wife's income. Let X denote the the wife's income and let Y denote the husband's income. Let X and Y have joint density function $f(x, y)=2(x+y) / 7$ on the region where the density is positive. The unit of money is 100 K .

If it is known that the wife makes 240000 dollars, what is the probability that the husband makes more than 60000 dollars?

