Dr. Z.'s Intro to Probability Homework assignment 15

1. Two friends decide to meet at a certain restaurant. If each of them independently arrives at a time uniformly distributed between 1 pm and $1: 20 \mathrm{pm}$. Find the probability that the first to arrive has to wait longer than 5 minutes.
2. Two friends decide to meet at a certain restaurant at $1: 30 \mathrm{pm}$. One of them, Mr. A, has a propensity to arrive earlier than the agreed time. The density function of his arrival time is

$$
a(x)=\left\{\begin{array}{l}
\frac{15-x}{450}, \quad \text { if }-15<x<15 ; \\
0, \quad \text { otherwise }
\end{array} .\right.
$$

(x is measured in minutes)
The other friend, Mr. B, has a propensity to arrive later than the agreed time. The density function of his arrival time is

$$
b(x)=\left\{\begin{array}{l}
\frac{x+15}{450}, \quad \text { if }-15<x<15 \\
0, \text { otherwise }
\end{array}\right.
$$

Find the probability that Mr. A has to wait longer than 10 minutes for Mr. B.
3. Let X and Y be independent uniform distributions $U(0,1)$. Prove that the density function of $X+Y$ is

$$
f_{X+Y}(a)=\left\{\begin{array}{l}
a \quad \text { if } \quad 0<a<1 ; \\
2-a \quad \text { if } \quad 1<a<2 ; \\
0 \quad \text { otherwise }
\end{array}\right.
$$

4. Let X and Y be independent continuous random variables with densities

$$
f_{X}(x)=\left\{\begin{array}{l}
2 e^{-2 x}, \quad \text { if } x \geq 0 ; \\
0 \text { otherwise. }
\end{array} \quad, \quad g_{Y}(y)=\left\{\begin{array}{l}
5 e^{-5 y}, \quad \text { if } y \geq 0 \\
0 \text { otherwise }
\end{array}\right.\right.
$$

Find the density function $f_{Z}(z)$ for $Z=X+Y$.
5. The number of spam emails that I get in my Gmail account has a Poisson distribution with mean 1. The number of spam emails that I get in my Rutgers account has a Poisson distribution with mean 3. They are independent of each other. What is the probability that the total number of spam emails is 5 ?
6. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be independent Normal distributions with means $1,2,3,4$ respectively and standard-deviations 2, 3, 4, 5. What is the mean of their average $\left(X_{1}+X_{2}+X_{3}+X_{4}\right) / 4$. What is its standard deviation?
7. Let $X_{i} 1 \leq i \leq n$ be independent Poisson distributions with parameters μ_{i}. What is the probability that $X_{1}+\ldots+X_{n}$ is exactly 3 ?

