Dr. Z.'s Intro to Probability Homework assignment 14

1. In a certain community the maximum number of boys and the maximum number of girls are both 3 .

It is found that the probability density function
$p(i, j)=\operatorname{Pr}($ NumberOfBoys $=i$, NumberOfGirls $=j)=\frac{c}{1+i+j} \quad, \quad 0 \leq i \leq 3 \quad 0 \leq j \leq 3$, for some constant c.
(i) Find c. (ii) Find the probability that a family has strictly more girls than boys.
(iii) Find the expected number of boys.
2. The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{l}
6 x y^{2}, \text { if } 0<x<1,0<y<1 ; \\
0 \text { otherwise }
\end{array}\right.
$$

Find
(i) $P\left(X<\frac{1}{2}, Y>\frac{1}{2}\right)$
(ii) $P(0<X<1,0<Y<1)$
(iii) $P\left(0<X<\frac{1}{4}, \frac{3}{4}<Y<1\right)$
(iv) $E[X]$
(v) $E[Y]$
3. The return on two investments, X and Y, follows the joing density function

$$
f(x, y)=\left\{\begin{array}{l}
\frac{1}{2}, \quad \text { if } 0<|x|+|y|<1 ; \\
0, \quad \text { otherwise. } .
\end{array}\right.
$$

Find the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$ and use them to find $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.
4. A device runs until either of the two components fails, at which point the device stops running. The lifetimes of the two components has a joint probability density function

$$
f(x, y)=\frac{x+y}{8} \quad, \quad \text { for } \quad 0<x<2 \quad \text { and } \quad 0<y<2 .
$$

What is the probability that the device fails during the first hour of operation?
5. Let X and Y be continuous random variables with joint density function

$$
f(x, y)=\left\{\begin{array}{l}
15 y, \quad \text { for } x^{2} \leq y \leq x \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Let g be the marginal density function of Y. Find $g(y)$.
6. A company is reviewing tornado damage claims under a farm insurance policy. Let X be the portion of the claim representing damage to the house and let Y be the portion of the claim representing damage to the rest of the property. The joint density function of X and Y is

$$
f(x, y)=\left\{\begin{array}{l}
6(1-x-y) \\
0 \text { otherwise. }
\end{array} \text {, for } \quad x>0, y>0, x+y<1\right.
$$

Determine the probability that the portion of a claim representing damage to the house is less than the damage to the rest of the property.

